
Theoretical and Mathematical Physics, 155(2): 689–707 (2008)

PROPAGATION OF GAUSSIAN WAVE PACKETS IN THIN PERIODIC

QUANTUM WAVEGUIDES WITH A NONLOCAL NONLINEARITY

J. Brüning,∗ S. Yu. Dobrokhotov,† R. V. Nekrasov,† and A. I. Shafarevich†

We consider the nonlinear Schrödinger equation with an integral Hartree-type nonlinearity in a thin

quantum waveguide and study the propagation of Gaussian wave packets localized in the spatial variables.

In the case of periodically varying waveguide walls, we establish the relation between the behavior of wave

packets and the spectral properties of the auxiliary periodic problem for the one-dimensional Schrödinger

equation. We show that for a positive value of the nonlinearity parameter, the integral nonlinearity

prevents the packet from spreading as it propagates. In addition, we find situations such that the packet

is strongly focused periodically in time and space.

Keywords: nonstationary Schrödinger equation with an integral nonlinearity, thin tube, Gaussian wave
packet, localization

1. Introduction

The solutions of the quantum mechanics equations modeling electron transport in thin-tube-type do-
mains (quantum waveguides) recently became interesting because of the developments in nanotechnologies.
The motion in the directions normal to the tube axis is constrained either by a rapidly increasing potential
(the “soft wall” model) or by the boundary conditions (the “rigid wall” model). It is clear from physical
considerations that the particle (or quasiparticle) dynamics in thin quantum waveguides must be spatially
one-dimensional and the original three-dimensional equation can be reduced to a set of one-dimensional
Schrödinger-type equations on the tube axis. Maslov accurately proved this fact in the model situation
in 1958 [1]. Such a reduction for a wide region of quantum states was accurately performed in [2] for an
original (linear) equation describing the quantum motion of charged particles with spin in a thin waveguide
placed in magnetic and electric fields.

The Schrödinger-type equations with a potential independent of the electron position derived in [2]
(also see [3]), just as any linear Schrödinger equations, have only localized propagating solutions inevitably
spreading as they propagate through the entire waveguide length. The nonspreading of localized solutions
(the ballistic transport in strongly extensive waveguides) can thus occur only if the nonlinear effects are
taken into account.

Numerous models in which the solutions do not change their shape at all (solitons) are well known in the
nonlinear theory. Asymptotic solutions with this property were constructed in [4], [5] for the Hartree-type
equation (with a nonlocal nonlinear interaction) in the three-dimensional Euclidean space:
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where Ψ(r, t) is the unknown wave function (the quantum state), � and m are physical constants (the Planck
constant and the effective mass), and the nonlinear potential kernel G and the potential vint are smooth
functions. We show that for a potential vint rapidly increasing in the direction transverse to the waveguide
axis (“confinement potential”), this equation (considered in a thin tube, i.e., in a quantum waveguide) has
solutions with the same property of nonspreading.

The nonlinear potential
∫

R3 G(r, r′)
∣
∣Ψ(r′)

∣
∣2 dr′ takes account of possible tube deformations under the

action of the electron or of the possible self-action of electrons (i.e., it is the effective potential of a self-
consistent field in the one-particle approximation). The same term in the case of the Bose–Einstein con-
densate generalizes the Gross–Pitaevskii equation to the case of a nonlocal nonlinear interaction. If the
transverse waveguide dimensions vary periodically along its axis, then the asymptotic solutions thus con-
structed in a rough approximation can also be used to model the propagation of intermolecular excitations
along long molecular chains (cf. [6]).

This paper is organized as follows. In Sec. 2, we formulate the problem statement in an appropriate
curvilinear coordinate system with the problem parameters taken into account. In Sec. 3, we present
formulas for the Gaussian wave packet propagating in thin nonlinear waveguides with a general structure.
The case where the waveguide walls have a periodic structure and the packet properties are related to the
periodic Sturm–Liouville problem is studied in detail in Sec. 4. Section 5 is auxiliary; there, we use the
adiabatic approximation to reduce the original three-dimensional equation to the one-dimensional equation
on the tube axis.

2. Statement of the problem in curvilinear coordinates and
characteristic quantities

It is convenient to seek special localized solutions in appropriate curvilinear coordinates. These curvi-
linear coordinates (the longitudinal coordinate x and the transverse coordinates y = (y1, y2)) are determined
in the vicinity of the tube as follows. We assume that the tube axis is an infinite curve γ (we thus neglect
the boundary effects, i.e., the effects of the wave packet emission and absorption at the two ends of the real
tube). We assume that the curve γ is given by the equation r = R(x), r ∈ R

3, x ∈ R, where R(x) is a
smooth vector function and x is a natural parameter on the curve γ, i.e., it is the curve length measured
from a fixed point on γ. The orthonormal basis triple {v = Ṙ,n1,n2} can be introduced at all points of the
curve γ. Rotating n1(x),n2(x) by the angle

∫ x

0
ṅ1(x) ·n2(x) dx about the velocity vector v(x), we construct

the vectors n′
1(x) and n′

2(x), where the dot over a symbol denotes differentiation with respect to x and
the dot between vectors denotes their scalar product in R

3. Then the curvilinear coordinates (x, y1, y2)
introduced by the relation r = R(x) + y(x, y1, y2), where y(x, y1, y2) = y1n1

′(x) + y2n2
′(x), and uniquely

determined in a neighborhood of γ are orthogonal. The metric in these coordinates has the form

gij =


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


, g11(x,y) =
(
1 − k(x)yn

)2
, yn = y1 cos θ − y2 sin θ,

where θ = θ(x) is the angle between the normal vector and the vector n′
1 and k(x) is the curvature of γ.

We therefore have the expression for the operator ∆

∆ =
1
√

g

∂

∂xj
gij√g

∂

∂xi
=

1
√

g

∂

∂x

1
√

g

∂

∂x
+

1
√

g

∂

∂y1

√
g

∂

∂y1
+

1
√

g

∂

∂y2

√
g

∂

∂y2
, (2)

where g = det gij ≡ g11(x,y) > 0 is the squared density of the volume measure.
We assume that the tube is sufficiently thin such that it lies in the domain where the coordinates

are well defined. Because the scales along and across the tube are distinct, the problem contains a small
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parameter µ = d/l � 1, where d is the characteristic tube dimension, the waveguide cross section is not
necessarily circular, simply connected, and constant, and l is the characteristic waveguide length (l is also
of the order of the length of the waveguide part under study).

We also assume that the characteristic scale of variations in the kernel G is much larger than the
waveguide diameter (more precisely, it is of the order of l). Therefore, the nonlinear potential does not play
any role in confining the particle in the interior of the waveguide; the particle is confined by the potential
vint. To confine the particle in the interior of the waveguide, the confinement potential must have the form
of a potential well in the direction transverse to the tube axis such that its value outside the waveguide
cross section must be sufficiently larger than the total energy of the particle (the subbarrier penetration
into the exterior of the waveguide is then small and the wave function Ψ → 0 with increasing distance from
the waveguide axis).

We consider a smooth tubular neighborhood Γ of the waveguide that is sufficiently wide (its diameter
strongly exceeds the waveguide diameter) and sufficiently narrow such that the coordinates x and y remain
well defined. Because the wave function outside any neighborhood of the curve γ is exponentially small as
µ → 0 (see formula (15) for the asymptotic expansion below), multiplying by the cutoff function concen-
trated in the interior of the domain Γ changes it by O(µ∞). Therefore, the following condition does not
affect the asymptotic expansion of the wave function as µ → 0: the function Ψ is zero outside the domain
Γ, i.e.,

Ψ|R3\Γ = 0. (3)

Because of this condition, we need not consider the ambiguity of the coordinates x and y.
After the parameters l and d are introduced, the left-hand side of Eq. (1) can be reduced to the

dimensionless form with the distinct scales along and across the tube taken into account. For this, we
multiply it by ε−1

⊥ = md2/�
2, change the scales x → x̃ = x/l and y → ỹ = y/d, introduce the dimensionless

time t̃ = �t/(lmd) (the unit velocity in these units is associated with the velocity �/(md), which is the
characteristic longitudinal velocity of the space-localized solutions presented below), and then change Ψ →
Ψ̃ = 4

√
g Ψ, 4

√
g =

√
1 − µk(x)ỹn . Equation (1) with (3) taken into account then becomes

iµ
∂Ψ̃
∂t̃

= H̃Ψ̃, Ψ̃|R3\Γ = 0,

H̃ = − µ2
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∣2 dx̃′ dỹ′,

where
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, U(x̃, ỹ, µ) = vint(x̃, ỹ) +
1

2 4
√

g

∂

∂ỹn

1
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1
4
√

g
,

vint(x̃, ỹ) =
vint(x,y)

ε⊥
, G̃(x̃, ỹ, x̃′, ỹ′, µ) =

V

ε⊥
G(lx̃, lµỹ, lx̃′, lµỹ′), V = ld2.

It is easy to see that because g = 1 + O(µ), the second term in the penultimate formula generated by the
two last terms in (2) is of the order O(µ2). The potential confines the particle in the interior of the domain,
where |ỹ|2 ≤ 1, and its higher-order term vint = vint(x,y)/ε⊥ in the transverse direction hence has the
form of a potential well whose depth is no less than O(1). This implies that the order of the confinement
potential vint is no less than that of ε⊥ = �

2/(md2). The problem also contains a nonlinear potential,
but because the characteristic scale of variations in the kernel G is of the order l, its dependence on the
transverse variable is sufficiently weak, and we have the expansion

G̃(x̃, ỹ, x̃′, ỹ′, µ) = G0(x̃, x̃′) + µG1(x̃, ỹ, x̃′, ỹ′) + · · · + O(µN ), (4)

691



where
G0(x̃, x̃′) =

V

ε⊥
G(lx̃, 0, lx̃′, 0)

and it is assumed that G0 ∼ 1, i.e., the nonlinear kernel G is of the order of ε⊥/V , and

G1(x̃, ỹ, x̃′, ỹ′) = G11(x̃, x̃′)ỹ1 + G12(x̃, x̃′)ỹ2 + G′
11(x̃, x̃′)ỹ′

1 + G′
12(x̃, x̃′)ỹ′

2,

G1i(x̃, x̃′) = l
V

ε⊥

∂G

∂yi
(lx̃, 0, lx̃′, 0), G′

1i(x̃, x̃′) = l
V

ε⊥

∂G

∂y′
i

(lx̃, 0, lx̃′, 0).

Hereafter, we omit the tilde symbols and deal with these dimensionless variables. As a result, we obtain
the equation

iµ
∂Ψ
∂t

= ĤΨ, Ĥ = Ĥ +
∫

R3
G(x,y, x′,y′, µ)

∣
∣Ψ(x′,y′)

∣
∣2 dx′ dy′, µ � 1,

Ψ|R3\Γ = 0,

(5)

where

Ĥ = − µ2
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2
∆y + U(x,y, µ), ∆y =

∂2

∂y2
1

+
∂2

∂y2
2

,

and the functions G(x,y, x′,y′, µ) and U(x,y, µ) satisfy the following condition required by their physical
meaning (see above).

Condition 1. The functions U and G are smooth in all their arguments including µ; the function G

is bounded and can be represented in form (4).

Our main goal is to obtain special space-localized asymptotic solutions of Eq. (5).

3. Formulas for the wave packets

It is clear from physical considerations that studying the wave functions of the original equation lo-
calized in the direction transverse to the tube axis and corresponding to weakly excited states should
asymptotically reduce to studying a spatially one-dimensional equation (on the waveguide axis). This is
indeed true and is realized in the framework of the adiabatic approximation. We at once present the corre-
sponding one-dimensional nonlinear equation and the reduction procedure itself and give the corresponding
proofs below. Let ε(x) be an eigenvalue, let χ0(x,y) be the corresponding eigenfunction of the problem

−1
2
∆yχ0 + vint(x,y)χ0 = ε(x)χ0, ‖χ0‖y ≡ 1, Im χ0 ≡ 0, (6)

and let the following conditions be satisfied.

Condition 2. The eigenvalue ε(x) is nondegenerate for all x, and ε(x) is a smooth function.

Condition 3. The relation 〈yi〉y ≡ 0 holds.1

1Apparently, we can always obtain this relation by a small shift (of the order µ) of the curve γ; this relation is required to

simplify the formulas. But if this condition is not satisfied, then the braces in (7) contain the additional term µL̂1

`2
x,−iµ

1
∂

∂x
[φ]
´

,

where L̂ is the pseudodifferential operator described in Sec. 5 below.
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Here, we introduce the notation

‖ · ‖y =
∫

R2
| · |2 dy, 〈 · 〉y =

∫

R2
χ0 · χ0 dy.

Then the reduced spatially one-dimensional equation has the form

{

−iµ
∂

∂t
− µ2

2
∂2

∂x2
+ ε(x) +

∫

R

G0(x, x′)
∣
∣φ(x′, t, µ)

∣
∣2 dx′

}

φ(x, t, µ) = 0. (7)

If φ is a solution of the reduced equation satisfying some appropriate conditions (we present them below),
then the asymptotic solution of the original equation corresponding to φ is reconstructed from the formula

Ψ(x,y, t, µ) = χ0(x,y)φ(x, µ, t)
(
1 + O(µ)

)
.

For greater clarity, we consider the situation in which the soft walls of the waveguide are modeled by
the parabolic confinement potential

vint(x, y1, y2) =
Ω2

1(x)y2
1

2
+

Ω2
2(x)y2

2

2
,

where Ωj(x) are smooth positive functions. The dependence of Ωj on x means that the transverse wave-
guide dimensions can vary smoothly along the tube axis. Problem (6) corresponds to the two-dimensional
harmonic oscillator, and its solutions are numbered by the two quantum numbers ν1 and ν2 and have the
form

ε(x) = ε(ν1,ν2)(x) = Ω1(x)
(

ν1 +
1
2

)

+ Ω2(x)
(

ν2 +
1
2

)

, νi = 0, 1, 2, . . . ,

χ0 = χ
(ν1,ν2)
0 (x, y1, y2) =

4
√

Ω1(x)Ω2(x)√
π2ν12ν2ν1! ν2!

e−Ω1y2
1/2−Ω2y2

2/2Hν1

(√
Ω1 y1

)
Hν2

(√
Ω2 y2

)
,

where Hν(x) is the νth Hermite polynomial. The value of ε(ν1,ν2)(x) is nondegenerate, for example, for the
ground state ν1 = 0, ν2 = 0 and for any arbitrary ν1 and ν2 if Ω1(x)/Ω2(x) = const = r, where r is an
irrational number.

For Eq. (7), we consider the Cauchy problem with the initial wave function localized in a neighborhood
of the point x = X0:

φ|t=0 = AeiP0(x−X0)/µei(x−X0)2B0/(2µ), (8)

where P0 is a real number (parameter), B0 is a complex number (parameter), Im B0 > 0, and the normal-
ization constant A is chosen from the condition

‖φ‖2
L2(R) =

∫

R

∣
∣φ(x)

∣
∣2 dx = 1

and is equal to

A = A(µ, B0) = 4

√

Im B0

πµ
.

This problem corresponds to the Cauchy problem with special initial data for the original three-dimensional
equation (5)

Ψ|t=0 = AeiP0(x−X0)/µei(x−X0)2B0/(2µ)χ0(x,y). (9)
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The function Ψ|t=0 also satisfies the normalization condition ‖Ψ‖2
L2(R3) = 1. According to [4], the asymp-

totic solution of problem (7), (8) is expressed in terms of the solutions
(
X(t), P (t)

)
of the nonlinear system

Ẋ = P, Ṗ = −ε′(X) − ∂G0

∂x
(X, X), P |t=0 = P0, X |t=0 = X0, (10)

and the solutions
(
C(t), B(t)

)
of the linear system

Ċ = B, Ḃ = −ε′′(X(t))C − ∂2G0

∂x2
(X(t), X(t))C, B|t=0 = B0, C|t=0 = 1. (11)

It is well known [7] and can be easily verified that

d

dt
(CB − BC) = 0, CB − BC = const = 2i ImB0 �= 0; (12)

the functions B and C are therefore nonzero at all points t.
The asymptotic expansion has the form

φ(x, t, µ) =
A(µ, B0)
√

C(t)
exp

{
i

µ

[

S(t, µ) + P (t)
(
x − X(t)

)
+

(
x − X(t)

)2
BC−1(t)

2

]}
(
1 + O

(√
µ

))
, (13)

where2

S(t, µ) =
∫ t

0

{
P 2(τ)

2
− ε

(
X(τ)

)
− G0

(
X(τ), X(τ)

)
−

µ
∣
∣C(τ)

∣
∣2

4 ImB0

∂2G0

∂x′2
(
X(τ), X(τ)

)
}

dτ.

For the squared amplitude of solutions (13) up to O
(

4
√

µ
)
, we have

∣
∣φ(x, t, µ)

∣
∣2 =

A2

∣
∣C(t)

∣
∣
e−(x−X(t))2 Im(BC−1(t))/µ =

A2

∣
∣C(t)

∣
∣
e−πA4|C(t)|−2(x−X(t))2 , (14)

where the second relation holds because of (12). This expression depends on x as the Gaussian normalized
exponential. Its amplitude is A2(µ, B0)/|C(t)| =

√
Im B0/(πµ) |C(t)|, and its width (just as the width of

packet (13)) is determined as |C(t)|/A2(µ, B0) ∼
√

µ/ Im B0 |C(t)|.
The following assertion is one of the central results in this paper.

Theorem. Let conditions 1–3 be satisfied. Then the function

Ψ(x,y, t) = χ0(x,y)φ(x, t, µ) (15)

is the leading term of the formal asymptotic solution mod O(µ3/2) of problem (5), (9), where O(µ3/2) is

understood in the sense of C(Γ)- or L2(Γ)-estimates uniform on any µ-independent time interval.

The proof and the formulas for the corrections are given in Sec. 5.

2We write the minus sign in the last term of this expression to correct the misprint in formula (1.18) in [4].
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4. Wave packets in periodic structures: The nonspreading of
packets and “superlocalization”

Both the initial conditions φ0(x, µ) = φ(x, 0, µ) and the solutions φ(x, t, µ) have the shape of nor-
malized Gaussian wave packets localized near the point x = X(t). Such asymptotic expansions hold for
dimensionless time intervals of the order of unity (i.e., for time intervals independent of µ), and if there are
no turning points, then this suffices for propagation through the entire waveguide length ∼ l. The width
√

µ/ ImB0 |C(t)| ∼ |C(t)| and the amplitude A2(µ, B0)/|C(t)| ∼ 1/|C(t)| of packets (13) generally vary
with time. It is well known that such packets necessarily spread in the linear case G ≡ 0 (cf. the situation
described in case 1 below).

An interesting and important fact is that the Gaussian packets can propagate without spreading in
the nonlinear case. Moreover, they can periodically compress along the axis x, and this compression is
accompanied by an increase in their amplitude. We illustrate this fact with an example of a waveguide
consisting of several repeating parts. Then ε(x) is a periodic function with the period a. We also assume
that the kernel is translation-invariant and symmetric: G0(x, x′) = G0(|x − x′|). Because G0(x, x′) is a
smooth function, we have ∂G0(x, x)/∂x = 0 and ∂2G0(x, x)/∂x2 = κ = const.

After the variable P is excluded, system (10) then becomes the Newton equation of motion of a particle
in the a-periodic potential ε(x):

Ẍ = −ε′(X), Ẋ |t=0 = P0, X |t=0 = X0. (16)

This particle can propagate through the entire tube only if the energy satisfies the condition

E =
Ẋ2

2
+ ε(X) =

P 2
0

2
+ ε(X0) > max ε(x). (17)

Without loss of generality, we assume that X0 = 0. We make this assumption to simplify the notation in
what follows. As is known, X(t, P0) can then be found by inverting the integral

t =
∫ X(t,P0)

0

dx
√

2
(
E − ε(x)

) .

After the variable B is excluded, system (11) reduces to the equation

−C̈ − ε′′
(
X(t, P0)

)
C = κC, C|t=0 = 1, Ċ|t=0 = B0, (18)

where the coefficient ε′′
(
X(t, P0)

)
depends periodically on the time t. The time period corresponds to

particle translation by the potential period a and is equal to

T = T (P0) =
∫ a

0

dx
√

2
(
E − ε(x)

) .

The behavior of C(t) depends significantly on the parameters κ and P0. We first fix the initial
momentum P0 of the packet; then (18) becomes the one-dimensional spectral problem for the periodic
Sturm–Liouville operator (the one-dimensional Schrödinger equation) with the potential −ε′′

(
X(t, P0)

)

and the spectral parameter κ. It is well known [8] that the value line of κ splits into the spectral bands
[κ−

n , κ+
n ] and gaps (κ+

n−1, κ
−
n ), n = 1, 2, . . . , where

κ
+
0 = −∞ < min ε′′(x) < κ

−
1 < κ

+
1 ≤ κ

−
2 < · · · < κ

+
n ≤ κ

−
n+1 < κ

+
n+1 ≤ . . . .

The quantities κ
±
j generally depend on P0. We have the following cases illustrated in Figs. 1– 4.
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a b

Fig. 1. Graphs of the functions |C(t)| and |φ(x, t)|2 for ε(x) = 0.1 cos x, P0 = 0.75, κ = 0, and

B0 = i/10.

Case 1: κ = κ
±
n . The points κ = κ

±
n are called the band boundaries if the gaps separating them

are nondegenerate. They are associated with the following basis of solutions of linear equation (18):

C1(t) = g(t), C2(t) = tg(t) + q(t), (19)

where g(t) and q(t) are some T -periodic or antiperiodic functions.
We note that for κ = 0, Eq. (18) has a T -periodic solution C1(t) = Ẋ = g(t) that is nonzero for all t

according to (17). By the Liouville formula, the second linearly independent solution is equal to Ẋ
∫

Ẋ−2dt

and can hence be represented in the form C2(t) = tg(t) + q(t). Therefore, κ = 0 is certainly a band
endpoint. Moreover, because C1(t) is nonzero only at the left endpoint of the first (leftmost) band [8], we
have κ

−
1 = 0 for all P0, i.e., κ = 0 is the left endpoint of the first band. It follows from this that there is a

significant difference in the behavior of wave packets for κ ≤ 0 and κ > 0.
Because B(t) = Ċ(t) �= 0 and the derivative of the periodic function g(t) is necessarily zero at some

point, C(t) cannot be a periodic function, i.e., if C(t) = α1C1(t) + α2C2(t), then α2 �= 0. For κ = 0, the
function g(t) is nonzero, and the term α2C2 becomes the leading term for large t. Therefore, the wave
packet necessarily spreads: its width |C(t)|/A2 increases proportionally to t, and the squared amplitude
decreases as 1/t. The case κ = 0 corresponds to the linear Schrödinger equation. Therefore, the Gaussian
wave packets necessarily spread in time and space in the linear case, which, of course, is well known (see
Fig. 1).

We now describe the behavior of wave packets for other κ
±
n .

Case 2: κ ∈ (κ−
n , κ

+
n ). If κ ∈ (κ−

n , κ+
n ), then the point κ lies in the interior of one of the bands (of

stability of Eq. (18)). Then the basis of solutions consists of the two quasiperiodic functions

C1(t) = g(t)eiλt, C2(t) = g(t)e−iλt,

where λ > 0 is a quasimomentum and g(t) is a T -periodic function. Therefore,

C(t) = a1g(t)eiλt + a2g(t)e−iλt

is also a quasiperiodic function. It follows from this that the wave packet does not spread with time, and
its width

√
µ |C(t)|/A2 and amplitude A/ 4

√
µ

√
|C| pulse quasiperiodically (see Fig. 2):

0 < Cinf ≤
∣
∣C(t)

∣
∣ ≤ Csup < ∞.
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a b

Fig. 2. The same as in Fig. 1 but for κ = 0.1 (the band) and B0 = i/3.

a b

Fig. 3. The same as in Fig. 1 but for κ = −0.01 and B0 = i.

Case 3: κ ∈ (κ+
n−1, κ

−
n ). If κ ∈ (κ+

n−1, κ
−
n ), then the point κ lies in the interior of one of the

gaps (a region of instability of Eq. (18)). The basis of solutions of Eq. (18) can then be composed of the
functions (also see [9]) g(t) cos

(
nt/2 + Φ(t)

)
eλt and g(t) sin

(
nt/2 + Φ(t)

)
e−λt, where λ > 0 is the Floquet

exponent, n = 0, 1, 2, . . . are the gap numbers, and g(t) and Φ(t) are T -periodic functions, |g(t)| > 0. Then

C(t) = g(t)
(

a cos
(

nt

2
+ Φ(t)

)

eλt + b sin
(

nt

2
+ Φ(t)

)

e−λt

)

, λ > 0. (20)

We must here distinguish the case n = 0, which corresponds to κ < 0. Then the coefficients of e±λt in
formula (20) cannot be zero, the term containing e−λt becomes small compared with the term containing
eλt, and C(t) ∼ eλt. This means that the wave packets spread exponentially fast for κ < 0, i.e., significantly
faster than in the linear case (see Fig. 3).

In the other gaps (n ≥ 1), the packet mainly spreads exponentially, but there exist instants tk such
that nt/2 + Φ(t) = π/2 + πk. Then C(tk) = g(ntk/2)e−λtk , and the packet again becomes localized
such that the degree of localization increases exponentially in both x and t. We thus have a wave packet
“superlocalization” that is periodic in time and space (see Fig. 4).3

Case 4. A similar situation occurs for the band endpoints κn other than κ = 0. The function g(t) has
n−1 zeros at the points κ

−
n on the period [0, T ), and it has n zeros at the points κ

+
n . The packet mainly

3This effect is possibly destroyed with time already in the framework of our model (5) and even of (7) because the corrections
that were neglected in (13) become essential in the case of strong spreading and can prevent the already spread packet from
localizing once again.
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a b

Fig. 4. The same as in Fig. 1 but for κ = 0.2 (the gap) and B0 = i.

spreads exponentially, but it again localizes but without any increase in amplitude at the points tk, where
g(t) = 0.

The calculations illustrated by Figs. 1–4 were performed for the potential ε(x) = 0.1 cosx and the
initial condition P0 = 0.75 (X0 = 0, C0 = 1). Therefore, a = 2π and T � 7.29. The wave packet
propagation is shown by the behavior of the amplitude |φ(x, t)|2 (see formula (14)). Because the width of
such packets |C(t)|2/A2 =

√
µ |C(t)|2/

√
Im B0 is proportional to

√
µ and µ � 1, it is difficult to visualize

their propagation over distances of the order of unity. We therefore set µ = 1 in these figures, and the
surface must be imagined to be more localized in the spatial coordinate (i.e., compressed by the factor

√
µ).

We also chose the parameter B0 to make the picture more illustrative; its value is presented under each of
the figures.

It is sometimes reasonable to assume that the value of κ is fixed and analyze the character of the be-
havior of C(t) depending on the other parameters, for example, on the initial momenta P0. Such parameters
are contained in Eq. (18) already not as spectral parameters but as some more complicated parameters.
For reasonable values of the parameters, the alteration of cases 1–4 as these parameters vary continuously
also has the form of a band structure. This fact is demonstrated in Fig. 5 on the plane of the parameters κ

and P0. In particular, for κ > 0, the band structure in P0 > Pmin + δ, where Pmin =
√

2 max ε(x) − 2ε(X0)
and δ > 0, contains finitely many bands such that the first band starts at P0 > Pmin +δ and the upper band
ranges to +∞. This follows from an analysis of problem (18) and can also be seen in Fig. 5 by choosing an
arbitrary value of κ.

5. Reduction to the spatially one-dimensional equation

We now show that finding semiclassical-type asymptotic solutions of the original spatially three-
dimensional equation that are localized in the direction transverse to the tube axis reduces (in the “gen-
eralized adiabatic approximation”) to solving a spatially one-dimensional equation similar to the original
equation. It is well known (and can be easily verified) that the norm of the function Ψ satisfying Eq. (5) is
preserved in time. Following [2], we seek solutions of Eq. (5) in the form

Ψ = χ̂φ(x, µ, t), χ̂ = χ

(
2
x,−iµ

1

∂

∂x
,y, [φ], µ

)

such that
‖Ψ‖2 =

∫

R3
|χ̂φ|2(x,y) dx dy = 1, ‖φ‖2 =

∫

R

∣
∣φ(x)

∣
∣2 dx = 1 (21)
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Fig. 5. The shape of the band structure on the plane of the parameters (κ, P0) for ε(x) = 0.1 cos x,

P0 > Pmin = 0, and κ ≥ 0. The band regions are shaded, and the gap regions are the white strips.

for all t and φ(x, µ, t) is the solution of the one-dimensional Hartree-type equation

iµφt = L̂φ, L̂ = L
(

2
x,−iµ

1

∂

∂x
, [φ], µ

)

. (22)

Here, χ̂ and L̂ are some pseudodifferential operators whose symbols χ(x, p,y, [φ], µ) and L(x, p, [φ], µ)
generally depend on the function φ. Hereafter, the digits 1 and 2 over the operators denote the order of
action of the operators x and −iµ ∂/∂x (in particular, the differentiation operator in (22) acts first); the
hat over a function (symbol) denotes the corresponding µ-pseudodifferential operator (see [10] for the strict
definition and the properties of µ-pseudodifferential operators).

Just the symbols χ and L must be determined to reduce initial equation (5) to one-dimensional equa-
tion (22). Then Eq. (5) necessarily implies the chain of relations

χ̂L̂φ = iµχ̂φt = iµΨ′
t = ĤΨ = Ĥχ̂φ.

A sufficient condition for them to hold is the relation

χ̂L̂ = Ĥχ̂. (23)

A sufficient condition for the normalization is the requirement that the function φ be normalized and the
operator χ̂ be unitary: ∫

R2
χ̂∗(y)χ̂(y) dy = E. (24)

We use the following relations4 to pass from operators to their symbols:

1. The symbol of the product of two operators A
(2
x,−iµ

1

∂/∂x, µ
)
B

(2
x,−iµ

1

∂/∂x, µ
)

is expressed in terms

of their symbols as A
(2
x, p − iµ

1

∂/∂x, µ
)
B(x, p, µ).

2. The symbol of the operator A∗(2
x,−iµ

1

∂/∂x, µ
)

adjoint to the operator A(
2
x,−iµ

1

∂/∂x, µ) is expressed

in terms of its symbol as A∗(x, p, µ) = Ā
(1
x, p + iµ

2

∂/∂x, µ
)
1.

4These formulas for pseudodifferential operators were accurately derived, and the conditions on their symbols were described
in [10]. These formulas can be easily verified for the symbols polynomial in p, i.e., for the differential operators to which our
operators finally belong.
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Relation (23) then leads to the equation

χ

(
2
x, p − iµ

1

∂

∂x
, y, [φ], µ

)

L
(
x, p, [φ], µ

)
=

= H
(

2
x, p − iµ

1

∂

∂x
, y,−i

∂

∂y
, [χ̂φ], µ

)

χ
(
x, p, y, [φ], µ

)
, (25)

and relation (24) leads to the equation

∫

R2
χ̄

(
1
x, p + iµ

2

∂

∂x
− iµ

∂

∂z
, y

)

χ(z, p, y) dy

∣
∣
∣
∣
z=x

= 1. (26)

It is clear that to construct asymptotic solutions (as µ → 0) of the original problem, it suffices to
present the solutions of Eqs. (25) and (26) satisfying these equations modO(µN ) for an appropriate N .
The construction of such solutions is described by the following assertion.

Lemma 1. Let the function φ(x, t, µ) have the form φ(x, t, µ) = A(µ)eiS(x,t)/µϕ(x, t, µ), where S,

Im S ≥ 0, and ϕ are arbitrary fixed smooth functions and A(µ) is the normalization constant. Then the

functions

L = L0 + µL1, χ = χ0 + µχ1,

where L0, χ0, χ1, and L1 are defined by formulas (36), (37), (42), and (43), satisfy Eqs. (25) and (26) up

to O(µ2). The estimate is uniform on arbitrary bounded domains of the space and time coordinates and

the variable p, i.e., the discrepancy does not exceed Cµ2, where C depends only on the functions S and ϕ

and on the choice of the bounded range of the coordinates in the extended phase space.

Proof. We seek the symbols L and χ among the smooth functions such that the following ex-
pansions hold on the semiclassical functions φ (for example, on the functions of the form φ(x, t, µ) =
A(µ)eiS(x,t)/µϕ(x, t, µ)):

χ
(
x, p, y, [φ], µ

)
= χ0

(
x, p, y, [φ]

)
+ µχ1

(
x, p, y, [φ]

)
+ · · · + O(µN ),

L
(
x, p, [φ], µ

)
= L0

(
x, p, [φ]

)
+ µL1

(
x, p, [φ]

)
+ · · · + O(µN ),

χ

(
2
x, p − iµ

1

∂

∂x
, y, [φ], µ

)

L
(
x, p, [φ], µ

)
= χ0

(
x, p, y, [φ]

)
L0

(
x, p, [φ]

)
+

+ µ

[

χ1

(
x, p, y, [φ]

)
L0

(
x, p, [φ]

)
−

− i
∂χ0

∂p

(
x, p, y, [φ]

)∂L0

∂x

(
x, p, [φ]

)
+

+ χ0

(
x, p, y, [φ]

)
L1

(
x, p, [φ]

)
]

+ · · · + O(µN ),

(27)

where the estimate O(µN ) is uniform in any bounded range of the space, time, and momentum variables.
After the symbols are calculated, we can easily see that these estimates are indeed satisfied.
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The right-hand side of relation (25) can be represented similarly to (27). For this, we write the
expansion of the symbol

H
(

x, p, y,−i
∂

∂y
, µ, [χ̂φ]

)

= H

(

x, p, y,−i
∂

∂y
, µ

)

+ G
(
x,y, [χ̂φ], µ

)

of the initially given operator Ĥ. We obtain the expansion of the linear term

H

(

x, p,y,−i
∂

∂y
, µ

)

= H0 + µH1 + · · · + O(µN ), (28)

where

H0 =
p2

2
+ vint(x,y) +

∆y

2
, ∆y =

∂2

∂y2
1

+
∂2

∂y2
2

, H1(x, p, y) = k(x)ynp2,

and H0 differs from the subsequent terms by its dependence on −i∂/∂y (the so-called operator-valued
symbol). The expansion of the nonlinear term G(x,y, [χ̂φ], µ)

∫

R3
G(x,y, x′,y′, µ)

(
χ̂φ(x′,y′, µ)

)
χ̂φ(x′,y′, µ) dx′ dy′ =

=
∫

R

φ(x′, µ)
( ∫

R2
χ̂∗G(x,y, x′,y′, µ)χ̂ dy′

)

φ(x′, µ) dx′ =

= G0

(
x, [χ0], [φ]

)
+ µ

(
G1

(
x, [χ0], [χ1], [φ]

)
+ Gy

1

(
x,y, [χ0], [φ]

))
+ · · · + O(µN ) (29)

is obtained by using the relations presented after formula (24):

G0

(
x, [χ0], [φ]

)
=

∫

R

φ(x′, µ)G0(x, x′) ×

×
̂

( ∫

R2
χ0(x′, p′, y′)χ0(x′, p′, y′) dy′

)

φ(x′, µ) dx′, (30)

Gj

(
x, [χ0], [χj ], [φ]

)
= 2

∫

R

φ(x′, µ)G0(x, x′) ×

×
̂

(

Re
∫

R2
χj(x′, p′,y′)χ0(x′, p′,y′) dy′

)

φ(x′, µ) dx′, (31)

Gy
1

(
x,y, [χ̂0φ]

)
=

∫

R

φ(x′, µ) ×

×
̂

( ∫

R2
G1(x, x′,y,y′)χ0(x′, p′, y′)χ0(x′, p′, y′) dy′

)

φ(x′, µ) dx′ +

+ i

∫

R

φ(x′, µ)
̂(

∂

∂x′

∫

R2

∂χ0(x′, p′, y′)
∂p′

G0(x, x′)χ0(x′, p′, y′) dy′
)

φ(x′, µ) dx′, . . . . (32)

701



The expressions for Gy
j (x, y, [χ0], [χ1], . . . , [χj−1], [φ]) are very complicated, and we do not use them later.

The left-hand side of relation (29) with G ≡ 1 for the function Ψ = χ̂ψ is equal to its norm. Therefore,
we automatically have the expansion for the left-hand side of unitary condition (24). We rewrite this
condition as relations for the symbols χi(x, p,y):

∫

R2
χ0(x, p,y)χ0(x, p,y) dy ≡ (χ0, χ0)y = 1,

Re
∫

R2
χj(x, p,y)χ0(x, p,y) dy ≡ Re(χ0, χj)y = Rj(x, p),

where Rj is determined in terms of χ0, . . . , χj−1, in particular,

R1(x, p) = i
∂

∂x

∫

R2
χ0

∂χ0

∂p
dy. (33)

Because the answer obtained below is nonunique, we supplement these relations with the conditions Imχ0 =
0 and Im(χ0, χj) = 0. As a result, we have

∫

R2
χ0(x, p,y)χ0(x, p,y) dy ≡ (χ0, χ0)y = 1, Im χ0 = 0,

∫

R2
χj(x, p,y)χ0(x, p,y) dy ≡ (χ0, χj)y = Rj(x, p).

(34)

We then substitute expansions (27)–(29) in Eq. (25) and obtain a relation whose terms are of different
orders in µ. We successively consider this relation for the terms of different orders in the system with the
corresponding relation from (34) and obtain a recursive chain of linear systems that allows determining all
terms of the expansions of L and χ (see similar calculations for G ≡ 0 in [2]).

5.1. Calculation of the symbols L0 and χ0. Collecting the zeroth-order terms in µ, we obtain
the so-called problem for the transverse mode:

(

−1
2
∆y + vint(x,y)

)

χ0

(
x, p,y, [φ]

)
=

= χ0

(
x, p,y, [φ]

)
(

L0

(
x, p, [φ]

)
− p2

2
− G0

(
x, [χ0φ]

)
)

,

(χ0, χ0)y = 1, Im χ0 = 0.

(35)

We assume that the kernel of the self-adjoint operator −∆y/2 + vint(x,y) − ε(x) is one-dimensional, i.e.,
ε(x) is a nondegenerate eigenvalue of the operator −∆y/2+ vint(x,y). Then, for the eigenvalue ε(x) chosen
above, the equation obtained for χ0 and L0 can be solved uniquely (χ0 is generally determined up to the
sign):

L0

(
x, p, [φ]

)
=

p2

2
+ ε(x) +

∫

R

G0(x, x′)
∣
∣φ(x′)

∣
∣2 dx′, (36)

where ε(x) and χ0

(
x, p,y, [φ]

)
are the eigenvalue and the eigenfunction of the spectral problem

− 1
2
∆yχ0

(
x, p,y, [φ]

)
+ vint(x,y)χ0

(
x, p,y, [φ]

)
= ε(x)χ0

(
x, p,y, [φ]

)
,

‖χ0‖y ≡ 1, Im χ0 ≡ 0.

(37)

Under such a choice, the function χ0 is independent of p and φ, i.e., χ̂0 is the linear operator of multiplication
by a function (by the transverse mode). The expressions containing ∂χ0/∂p can therefore be simplified in
what follows.
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5.2. Calculations of the corrections. We collect the terms with µj , j = 1, 2, . . . , and obtain the
inhomogeneous equations for χj and Lj:

(

−1
2
∆y + vint(x,y) − ε(x)

)

χj = Fj − Hjχ0 + χ0(Lj − Gj),

(χ0, χj)y = Rj ,

(38)

where the functions Fj = Fj(x,y, p, [φ]) are determined by the preliminarily calculated χ0, . . . , χj−1 and
L0, . . . ,Lj−1, in particular,

F1(x,y, p, [φ]) = i

(
∂H0

∂p

∂χ0

∂x
− ∂L0

∂x

∂χ0

∂p

)

− Gy
1 χ0 = ip

∂χ0

∂x
− Gy

1χ0. (39)

The left-hand side of the first equation in (38) is orthogonal to χ0 because χ0 is the kernel of the self-adjoint
operator −∆y/2 + vint(x,y) − ε(x). To solve (38), we must therefore prove that the right-hand side of this
equation is orthogonal to the kernel χ0:

Lj

(
x, p, [φ]

)
= 〈χ0, Hjχ0〉y − 〈χ0, Fj〉y + Gj

(
x, [χ0], [χj ], [φ]

)
. (40)

This relation does not permit determining Lj until χj is found, but it strongly simplifies Eq. (38). Indeed,
we substitute (40) in (38) and obtain the linear system of equations for χj :

(

−1
2
∆y + vint(x,y) − ε(x)

)

χj = Fj − Hjχ0 − 〈χ0, Fj〉y + 〈χ0, Hjχ0〉y ,

(χ0, χj)y = Rj .

(41)

System (41) has a unique solution χj . Proceeding by induction on j, we can easily show that χj is
a polynomial in the variable p. We substitute this solution in the right-hand side of (40) and find Lj . In
particular, for L1 and χ1, we have

(

−1
2
∆y + vint(x,y) − ε(x)

)

χ1 = F1 − H1χ0 − 〈χ0, F1〉y + 〈χ0, H1χ0〉y,

(χ0, χ1)y = 0,

(42)

the second relation implies that G1 = 0, and hence (40) has the form

L1

(
x, p, [φ]

)
= 〈χ0, H1χ0〉y + 〈χ0,Gy

1χ0〉y. (43)

To complete the proof of Lemma 1, it remains to substitute L = L0 + µL1 and χ = χ0 + µχ1 in
expression (25), omit the zeroth- and first-order terms in µ (they cancel, which, for example, follows from
the derivation procedure), transfer the remaining terms to the right-hand side of the relation, and estimate
the discrepancy thus obtained.

The description of asymptotic solutions of the original problem is based on the following assertion,
which follows readily from Lemma 1.
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Lemma 2. Let a function of the form φ(x, t, µ) = A(µ)eiS(x,t)/µϕ(x, t, µ) satisfy reduced equation (22)
with the obtained symbol L = L0 +µL1 generally with a discrepancy of the form µαA(µ)eiS̃(x,t)/µϕ̃(x, t, µ),
α > 1. Then the function

Ψ(x,y, t, µ) =
(
χ0(x,y) + µχ̂1

)
φ(x, t, µ)

satisfies Eq. (5) up to a discrepancy in the norm of L2(Γ) not exceeding O(µβ) = o(µ), where β = min(α, 2).

5.3. Construction of localized wave packets for the reduced equation. To complete the
proof of the theorem, it remains to show that function (13) satisfies reduced equation (22) with the desired
accuracy. We note that if Condition 3 (see Sec. 3) is satisfied, then L1 = 0, and Eq. (22) has form (7).
The propagation of localized wave packets asymptotically satisfying Eq. (7) was studied in [4], where the
solutions were given up to any power of the small parameter; in the leading term, these solutions are
determined by formula (13). Using the constructions proposed in [4], we can easily determine the form of
the discrepancy of such solutions.

Lemma 3. Functions (13) satisfy Eq. (7) up to a discrepancy of the form µ3/2A(µ)eiS(x,t,µ)/µϕ̃(x, t, µ),
where S and ϕ̃ are smooth functions.

It follows from Lemmas 2 and 3 that the function

Ψ(x,y, t) =
(
χ0(x,y) + µχ̂1

)
φ(x, t, µ)

is a formally asymptotic solution mod O(µ3/2) of original problem (5), which completes the proof of the
theorem.

5.4. An example of calculations of the symbols L0, L1, χ0, and χ1. We consider the situation
in which the confinement potential has the form

vint(x, y1, y2) =
Ω2

1(x)y2
1

2
+

Ω2
2(x)y2

2

2
.

Then problem (37) corresponds to the two-dimensional harmonic oscillator, and its solutions are numbered
by the two quantum numbers ν1 and ν2 and have the form

ε(x) = ε(ν1,ν2)(x) = Ω1(x)
(

ν1 +
1
2

)

+ Ω2(x)
(

ν2 +
1
2

)

, νi = 0, 1, 2, . . . ,

χ0 = χ
(ν1,ν2)
0 (x, y1, y2) =

=
4
√

Ω1(x)Ω2(x)√
π2ν12ν2ν1! ν2!

exp
(

−Ω1y
2
1

2
− Ω2y

2
2

2

)

Hν1

(√
Ω1(x) y1

)
Hν2

(√
Ω2(x) y2

)
,

where Hν(x) is the νth Hermite polynomial. The function L0 is determined by formula (36).

We next calculate L1 and χ1. To calculate Gy
1 by formula (32) and then the right-hand side of Eq. (42),
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we use the specific form of the terms G1 and H1 in expansions (4) and (28):

Gy
1 =

1√
2Ω1

(√
ν1 + 1χν1+1,ν2

0 +
√

ν1 χν1−1,ν2
0

)
∫

R

G11(x, x′)
∣
∣φ(x′)

∣
∣2 dx′ +

+
1√
2Ω2

(√
ν2 + 1χν1,ν2+1

0 +
√

ν2 χν1,ν2−1
0

)
∫

R

G12(x, x′)
∣
∣φ(x′)

∣
∣2 dx′,

F1 = ip
1
4

Ω′
1

Ω1

(
−

√
(ν1 + 2)(ν1 + 1)χν1+2,ν2

0 +
√

ν1(ν1 − 1)χν1−2,ν2
0

)
+

+ ip
1
4

Ω′
2

Ω2

(
−

√
(ν2 + 2)(ν2 + 1)χν1,ν2+2

0 +
√

ν2(ν2 − 1)χν1,ν2−2
0

)
− Gy

1 ,

H1(x, p, y)χν1,ν2
0 = k′(x)p2ynχν1,ν2

0 =

=
cos θ√
2Ω1

k′(x)p2
(√

ν1 + 1χν1+1,ν2
0 +

√
ν1 χν1−1,ν2

0

)
−

− sin θ√
2Ω2

k′(x)p2
(√

ν2 + 1 χν1,ν2+1
0 +

√
ν2 χν1,ν2−1

0

)
,

〈Gy
1 , χν1,ν2

0 〉y = 0, 〈F1, χ
ν1,ν2
0 〉y = 0, 〈H1χ

ν1,ν2
0 , χν1,ν2

0 〉y = 0,

(44)

where the first three relations can be obtained using the well-known formulas for the Hermite polynomials

xHν(x) =
1
2
(
Hν+1(x) + 2νHν−1(x)

)
,

∂Hν

∂x
= 2νHν−1,

and the next three relations easily follow, for example, from the orthogonality of the system of functions
χν1,ν2

0 and the first two relations.
As a result, the equation for χ1 becomes

(

−1
2
∆y + vint(x,y) − εν1,ν2(x)

)

χν1,ν2
1 = Aν1+2,ν2χ

ν1+2,ν2
0 + Aν1+1,ν2χ

ν1+1,ν2
0 +

+ Aν1−1,ν2χ
ν1−1,ν2
0 + Aν1−2,ν2χ

ν1−2,ν2
0 +

+ Aν1,ν2+2χ
ν1,ν2+2
0 + Aν1,ν2+1χ

ν1,ν2+1
0 +

+ Aν1,ν2−1χ
ν1,ν2−1
0 + Aν1,ν2−2χ

ν1,ν2−2
0 , (45)

(χν1,ν2
0 , χν1,ν2

1 ) = 0,

where the coefficients Ai,j = Ai,j

(
x, p, [φ]

)
are equal to

Aν1+2,ν2 = − i
√

(ν1 + 2)(ν1 + 1)
4

Ω′
1(x)

Ω1(x)
p, Aν1,ν2+2 = − i

√
(ν2 + 2)(ν2 + 1)

4
Ω′

2(x)
Ω2(x)

p,

Aν1−2,ν2 =
i
√

(ν1 + 1)ν1

4
Ω′

1(x)
Ω1(x)

p, Aν1,ν2−2 = − i
√

(ν2 + 1)ν2

4
Ω′

2(x)
Ω2(x)

p,
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Aν1+1,ν2 =
√

ν1 + 1
√

2Ω1(x)

(

k′(x)p2 cos θ −
∫

R

G11(x, x′)
∣
∣φ(x′)

∣
∣2 dx′

)

,

Aν1−1,ν2 =
√

ν1
√

2Ω1(x)

(

k′(x)p2 cos θ −
∫

R

G11(x, x′)
∣
∣φ(x′)

∣
∣2 dx′

)

,

Aν1,ν2+1 = −
√

ν2 + 1
√

2Ω2(x)

(

k′(x)p2 sin θ +
∫

R

G12(x, x′)
∣
∣φ(x′)

∣
∣2 dx′

)

,

Aν1,ν2−1 = −
√

ν2
√

2Ω2(x)

(

k′(x)p2 sin θ +
∫

R

G12(x, x′)
∣
∣φ(x′)

∣
∣2 dx′

)

.

It is easy to verify that the solution has the form

χν1,ν2
1 = Bν1+2,ν2χ

ν1+2,ν2
0 + Bν1+1,ν2χ

ν1+1,ν2
0 + Bν1−1,ν2χ

ν1−1,ν2
0 +

+ Bν1−2,ν2χ
ν1−2,ν2
0 + Bν1,ν2+2χ

ν1,ν2+2
0 + Bν1,ν2+1χ

ν1,ν2+1
0 +

+ Bν1,ν2−1χ
ν1,ν2−1
0 + Bν1,ν2−2χ

ν1,ν2−2
0 , (46)

where

Bi,j(x, p) =
Ai,j(x, p)

εν1,ν2(x) − εi,j(x)
=

Ai,j(x, p)
Ω1(x)(ν1 − i) + Ω2(x)(ν2 − j)

.

Formula (43) with relations (44) taken into account gives the result

L1 ≡ 0.

We note that this result also holds in a more general case of a “symmetric” confinement potential with
〈yiχ0, χ0〉y ≡ 0, i = 1, 2. The higher-order terms Lj and χj , j > 1, can also be calculated.

6. Conclusion

We now list the main results obtained in this paper. For the nonlinear equation describing a quantum
particle in a thin waveguide with an integral Hartree-type potential, we constructed asymptotically localized
solutions that have the shape of Gaussian wave packets. We analyzed the character of such solutions with an
example of a waveguide with periodically varying walls and compared it with the case of a linear waveguide.
We found three essentially different regimes of behavior of these asymptotic expansions, namely, spreading,
pulsation, and periodic superlocalization (focusing). We showed that these regimes are related to the
spectral characteristics of an auxiliary one-dimensional periodic spectral problem for the Sturm–Liouville
operator.

Acknowledgments. The authors thank V. Belov, V. Volpert, V. Matveev, M. Rouleux, and A. Sam-
sonov for the useful discussions. One of the authors (R. V. N.) thanks V. Volpert, V. Matveev, and
M. Rouleux for providing the opportunity to discuss this paper in their seminars in Lyon, Dijon, and
Marseilles and for the kind hospitality.

This work is supported by the Russian Foundation for Basic Research and CNRS (Grant No. 05-01-
22002), DFG-RAS (DFG Project No. 436 RUS 113/572), and the Foundation for Supporting National
Science (R. V. N.).

706



REFERENCES

1. V. P. Maslov, Dokl. Akad. Nauk SSSR, 123, 631–633 (1958).

2. V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskii, Theor. Math. Phys., 141, 1562–1592 (2004);

V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskiy, Sov. Phys. Uspekhi, 48, 962–968 (2005); V. V. Belov,

S. Yu. Dobrokhotov, and T. Ya. Tudorovskiy, J. Engrg. Math., 55, 183–237 (2006).

3. G. F. Dell’Antonio and L. Tenuta, J. Phys. A, 37, 5605–5624 (2004).

4. V. V. Belov, A. Yu. Trifonov, and A. V. Shapovalov, Theor. Math. Phys., 130, 391–418 (2002).

5. V. V. Belov and E. I. Smirnova, Math. Notes, 80, 296–299 (2006).

6. A. S. Davydov, Solitons in Molecular Systems [in Russian], Naukova Dumka, Kiev (1988); English transl. (Math.

Appl., Vol. 61), Kluwer, Dordrecht (1990).

7. V. P. Maslov, The Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1976); English
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