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Abstract: We give an explicit formula for the number of nodal domains of certain
eigenfunctions on a flat torus. We apply this to an isospectral but not isometric family of
pairs of flat four-dimensional tori constructed by Conway and Sloane, and we show that
corresponding eigenfunctions have the same number of nodal domains. This disproves
a conjecture by Brüning, Gnutzmann, and Smilansky.

Introduction

The discovery and measurement of the dark lines in the solar spectrum by Fraunho-
fer and the fundamental idea of spectral analysis, as conceived and corroborated by
Bunsen and Kirchhoff, already showed that one has to approach the physics of the very
large (and the very small) mainly via the solution of inverse spectral problems. Von
Neumann’s Spectral Theorem lead to a mathematical formulation of this task, by asso-
ciating to any self-adjoint operator, �, an increasing family of orthogonal projections,(
E�(λ)

)
λ∈spec�, which describes the operator completely; in the discrete case, E�(λ)

is given by the orthogonal sum of the eigenspaces of � with eigenvalue at most λ (here
and below, we denote subspaces of a Hilbert space and their orthogonal projections by
the same letter). Thus, solving the inverse spectral problem means to derive the charac-
teristics of a physical system from the spectrum of its Hamiltonian �. If � is discrete
and semibounded, then the eigenvalue counting function

N (λ) := tr E�(λ) (0.1)

determines a complete set of unitary invariants for � in the given Hilbert space. This
situation may change, however, if we restrict the class of admissible unitary transforma-
tions. In a very influential paper [K], Kac proposed to study the inverse spectral problem

� The authors were supported by a GIF grant and by SFB 647 (HU Berlin).
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for bounded vibrating membranes M ⊂ R
m which may be thought of as “drums”. For

those, Weyl’s celebrated eigenvalue asymptotics,

N�(λ) ∼λ→∞ Cm vol Mλm/2, (0.2)

suggested that they could be determined by the spectrum up to a Euclidean isometry, and
Kac elaborated on that. However, in the case of closed membranes–actually flat tori–
Milnor [M] had already published a counterexample, such that the new field of spectral
geometry, quickly emerging in reaction to Kac’ impulse, undertook to analyze the precise
relationship between the geometry of a compact Riemannian manifold M with (reason-
able) boundary and the spectrum of a self-adjoint elliptic boundary value problem for
the scalar Laplacian �M . Many generalizations and ramifications have evolved in the
course of time; for some recent survey articles see [Z] and [GPS].

The results of this endeavour so far can be roughly split into “positive” and “neg-
ative” ones, those identifying metric invariants–like dimension or volume–which are
determined by the spectrum, and those showing for other such quantities that they are not
spectrally determined–like the homeomorphism type, even of spheres or balls, through
the construction of specific isospectral pairs. By and large, the negative results out-
weigh the positive ones by far such that it is natural to look for additional information
beyond the spectrum which resolves isospectrality into isometry. This requires more
information from the spectral decomposition of �M . For example, the Dirichlet spec-
trum of the Laplacian on a compact manifold M with smooth nonempty boundary ∂M
will not suffice to determine the isometry class of M but this is the case if we know in
addition the normal derivatives of an orthonormal basis, (ψ j )

∞
j=1, of Dirichlet eigen-

functions along ∂M ; see the monograph [KKL] where also reconstruction algorithms
are given.

In the case of real operators like the Laplacian, we may restrict attention to real
eigenfunctions. While they are, in general, very complicated and explicitly known only
in a few special cases, the zero set–or set of nodal pointsψ−1(0), displays attractive fea-
tures. This was discovered by Ernst Florens Friedrich Chladni (1756–1827) who baffled
the intellectual elite of his day with his “Klangfiguren” or “visual acoustics”, which he
produced as sand patterns on a glass plate by exciting the plate with a violin bow. The
nodal pattern of eigenfunctions has been studied in Mathematical Physics ever since,
with many interesting applications, cf. the survey [SmSt].

Probably the simplest aspect of the nodal set of a real nonzero eigenfunction, ψ , is
its nodal count,

nc(ψ) := number of connected components ofψ−1(R\{0}); (0.3)

for the zero eigenfunction the nodal count is zero. Any connected component of
ψ−1(R\{0})will be called a nodal domain ofψ , and a positive or negative nodal domain
according to whether ψ is positive or negative there.

One of the few general results on the nodal pattern, Courant’s Theorem [CH, p. 393]
together with the Weyl asymptotics (0.2) implies that there is a bound on the nodal count
in terms of the eigenvalue,

nc(ψ) ≤ Cλ2/m, m := dim M, (0.4)

for ψ ∈ E�(λ) and some constant C = C(M). Since the number of nodal domains
does not change under multiplication by a nonzero constant, we can introduce the
nodal count, nc�, of � as the function

nc�(λ) := {nc(ψ) : ψ ∈ PE�(λ)} ⊂ Z+, (0.5)
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which takes values in the finite subsets of Z+. In the case of two isospectral discrete
Laplacians,�1 and�2, we will say that they have the same nodal count or that they are
isonodal, if there is a bijection,

�(λ) : PE�1(λ) → PE�2(λ) (0.6)

such that

nc(�λ(ψ)) = nc(ψ), (0.7)

for all ψ ∈ PE�1(λ).

On the basis of some experimental evidence, it has been conjectured recently by
J. Brüning, S. Gnutzmann, and U. Smilansky that the nodal count resolves isospectrali-
ty. This conjecture has been corroborated since then in a number of cases, cf. [BSS,GSS,
BKP] (note that in [GSS,BKP] a different definition of nodal count has been employed).
For certain restricted classes of membranes it has even been shown that the nodal count
alone determines the membrane up to isometries, cf. [SmSa,KS,Kl2].

The purpose of this article is to show by a counterexample that this conjecture is
false, but we also add some evidence that it may hold after suitable modifications. Our
work is concerned with the case of flat tori, and our examples are taken from some
isospectral families constructed by Conway and Sloane [CS] in dimension four. These
families depend on four real parameters and were conjectured by the authors to be non-
isometric whenever no two of the parameters coincide. This has been proved in a recent
preprint using lattice theory, cf. [CeHe]. To attack the conjecture analytically, we com-
pute exactly the nodal count for a large class of eigenfunctions on an arbitrary flat torus,
the main result being given in Theorem 1.21 below, and we apply this to construct the
counterexample in Theorem 3.20. In the example, however, the two isospectral tori are
not isometric for trivial reasons, hence the challenge remains to prove the conjecture of
Conway and Sloane in the remaining cases by using the nodal count, and we show that
this can be done in a number of interesting cases. So far, our method cannot treat the
general case but we expect that it can be suitably extended to achieve this goal.

The plan of the paper is as follows. In Sect. 1, we deal with the spectral theory of
flat tori in general and prove an explicit formula for the nodal count of what we call
“basic eigenfunctions”, cf. Theorem 1.21. In Sect. 2, we examine in some detail the
four-parameter family of isospectral tori in dimension four of Conway and Sloane [CS].
As the main result of our analysis, we show in Subsect. 2.3 that this family provides infi-
nitely many mutually non-isometric examples of isospectral pairs with the same nodal
count. In conclusion, we add some examples of isospectral pairs of flat tori from the
same family which are distinguished by their nodal count.

1. Flat Tori and Their Nodal Count

1.1. Generalities. A flat torus is defined by a lattice, �, in R
m,m ∈ N, as the closed

manifold

T� = T := R
m/�. (1.1)

The projection

π� = π : R
m → T (1.2)
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is a covering, hence induces a flat metric, gflat, on T and exhibits � as the fundamental
group of T ; we will consider the flat manifold (T, gflat) in what follows. The dual lattice,
�∗, of � is defined by

�∗ := {γ ∗ ∈ R
m : 〈γ ∗, γ 〉 ∈ Z, γ ∈ �}. (1.3)

We may choose a basis, (γ j )
m
j=1, of � that is a set of generators of � which is a basis

of R
m . Then the corresponding dual basis, (γ ∗

i )
m
i=1, where 〈γ ∗

i , γ j 〉 = δi j , is a basis of
�∗. In terms of a basis we define the corresponding fundamental parallelotope of �,

F :=
⎧
⎨

⎩

m∑

j=1

x jγ j : x j ∈ [0, 1)

⎫
⎬

⎭
. (1.4)

The Laplacian �T is given locally by the Euclidean Laplacian in R
m ; it is an essen-

tially self-adjoint operator in L2(T )with domain C∞(T ) and discrete, since T is closed.
If ψ denotes any eigenfunction of�T with eigenvalue λ then ψ lifts to R

m as a solution
of the Helmholtz equation,

(�Rm + λ)ψ̃ = 0, ψ̃ := ψ ◦ π.
Then there are vectors γ ∗

j ∈ �∗ with

4π2|γ ∗
j |2 = λ,

and numbers α j , β j ∈ C with

|α j |2 + |β j |2 > 0, j = 1, . . . , l, (1.5)

such that

ψ̃(x) =
l∑

j=1

(
α j exp(2π i〈x, γ ∗

j 〉) + β j exp(−2π i〈x, γ ∗
j 〉)). (1.6)

If ψ has the representation (1.6) then we will call it an eigenfunction of order l.
The many symmetries of T then allow to describe quite explicitly the spectrum of�T

and the isometry class of T . Alternatively, we may translate the problem to the lattice
�∗, in defining, for λ ∈ R+, the representation spaces of �∗ by

�∗(λ) := {γ ∗ ∈ �∗ : |γ ∗|2 = λ}, (1.7)

and the representation numbers of �∗ by

N�∗(λ) := � �∗(λ). (1.8)

Then the following result is classical, for a proof see e. g. [BGM, Thm.D.8, Prop.B.I.2].

Theorem 1.9. 1. Two flat tori T�1, T�2 are isospectral if and only if the lattices �∗
1 and

�∗
2 have the same representation numbers.

2. Two flat tori T�1 , T�2 are isometric if and only if the lattices�∗
1 and�∗

2 are congruent
in R

m.
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3. An orthonormal basis of L2(T�) consisting of eigenfunctions of �T� is given by
(ψγ ∗)γ ∗∈�∗ , where

ψ̃γ ∗(x) = (vol F)−1/2 exp (2π i〈x, γ ∗
j 〉). (1.10)

As a simple consequence, we see that

spec�T = {4π2|γ ∗|2 : γ ∗ ∈ �∗}, (1.11)

with eigenspaces

E�T (λ) = spanC{ψγ ∗ : γ ∗ ∈ �∗(λ/4π2)}. (1.12)

Thus, Theorem 1.9 tells us that to solve the inverse spectral problem for flat tori, we
have to determine the isometry class of �∗ from spec T or, alternatively, from the repre-
sentation numbers of �∗. In view of Theorem 1.9, our problem can hence be restated as
follows: is the congruence class of a lattice determined by its representation numbers?

In this form the question is much older than in its isospectral incarnation (in fact,
Milnor’s counterexample [M] quoted above was based on a counterexample due to Witt
[W], observing the equivalence of the isospectral problem for lattices and flat tori). It
is known that the answer is positive in dimensions two [BGM, Ch.III, Prop.B.I.4] and
three [Sch] but generally negative in dimensions greater than three (see Theorem 2.65
and Theorem 3.18 below). Thus we may ask whether the nodal count provides sufficient
additional information to resolve isospectrality into isometry, at least in the case of flat
tori.

1.2. The nodal count. We now fix a flat torus T = R
m/�, and a general real eigenfunc-

tion, ψ , with lift ψ̃ given by (1.6); this implies that

β j = α j , (1.13)

ψ̃(x) =
l∑

j=1

2|α j | cos
(
2π〈x, γ ∗

j + δ j 〉
)
, (1.14)

where α j/|α j | = exp(2π iδ j ). If the vectors (γ ∗
j )

l
j=1 ⊂ �∗ are linearly independent,

implying l ≤ m, then we can extend (γ ∗
j )

l
j=1 to a basis of R

m somehow and change
coordinates by

y j (x) := 〈x, γ ∗
j 〉 + δ j , j = 1, . . . ,m, (1.15)

such that

ψ̃(y) := ψ̃(x(y)) =
l∑

j=1

a j cos(2πy j ), (1.16)

where

a j = |α j | + |β j | > 0 for all j.

Such eigenfunctions will be called basic in what follows, and simple if l = 1; we will now
show that their nodal count can be calculated explicitly. Before stating the corresponding
result, Theorem 1.21 below, we prepare a simple lemma.
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Lemma 1.17. Let � ⊂ Z
l be a sublattice of rank l, such that

G := Z
l/�

is a finite abelian group. If (σ j )
n
j=1 denotes a set of generators for �, then

d := �G = gcd
{|σi1 ∧ . . . ∧ σil | : I = {i1, . . . , il} ⊂ {1, . . . , n}} =: d̃. (1.18)

Here, gcd denotes the greatest common divisor and the norm is induced by the standard
metric of R

l .

Proof. The map R
l/� → R

l/Zl , x + � 
→ x + Z
l , is a covering map the degree of

which is given by the Euclidean volume of any fundamental parallelotope of �. Hence,
for any basis (ζ j )

l
j=1 of � we have

d = |ζ1 ∧ . . . ∧ ζl | = �G.

Using the representations

ζ j =
n∑

k=1

α jkσk, σk =
l∑

j=1

βk jζ j , α jk, βk j ∈ Z,

we obtain

d = |
n∑

k1,...,kl=1

α1k1 . . . αlkl σk1 ∧ . . . ∧ σkl |,

which shows that d̃ divides d. On the other hand,

|σk1 ∧ . . . ∧ σkl | = |
l∑

j1,..., jl=1

βk1 j1 . . . βkl jl ζ j1 ∧ . . . ∧ ζ jl | (1.19)

= | det(βkr js )| |ζ1 ∧ . . . ∧ ζl |, (1.20)

such that d divides d̃, too. ��
We can now present the main result of this section.

Theorem 1.21. Let (σ j )
n
j=1 be a set of generators of � and consider a basic eigen-

function, ψ , in the representation (1.16) determined by l linearly independent vectors
(γ ∗

j )
l
j=1 in �∗.

1. If for all j = 1, . . . , l,

a j <
∑

k �= j

ak, (1.22)

then

nc(ψ) = 2. (1.23)



On the Nodal Count for Flat Tori

2. If for some j ,

a j >
∑

k �= j

ak, (1.24)

or if

a j =
∑

k �= j

ak, (1.25)

and l ≥ 3, then we have

nc(ψ) = 2 gcd
(
γ ∗

j (σk)
)

k=1,...,n . (1.26)

3. If (1.25) holds and l = 2, then we obtain

nc(ψ) = 2 gcd
(

det

(
γ ∗

1 (σ j1) γ ∗
1 (σ j2)

γ ∗
2 (σ j1) γ ∗

2 (σ j2)

) )
j1, j2=1,...,n . (1.27)

Proof. We remark first that basic eigenfunctions have the same number of positive and
of negative nodal domains. Indeed, the representation (1.16) shows that

ψ ◦ τ = −ψ,
if τ denotes the isometry of T induced by the translation y j 
→ y j + 1/2, j = 1, . . . , l.
Hence it is enough to count positive nodal domains of basic eigenfunctions.

Next we observe that the group � acts on the positive nodal domains of ψ̃ in such a
way that the nodal count of ψ equals the cardinality of the orbit space; this is the basic
principle of our proof.

1. If y(l) := (y1, . . . , yl) ∈ Z
l then, clearly, ψ̃(y) > 0. By deforming each coordinate

linearly, we see from (1.22) that the set {y(l) ∈ Z
l} is contained in a single nodal

domain of ψ̃ . Moreover, if ψ̃(y) > 0, then we can connect y in ψ̃−1(0,∞) to a point
y(l) ∈ Z

l , by deforming each coordinate y j in the direction of increasing values of
cos(2πy j ). Thus ψ̃ has a single positive nodal domain.

2. We may and will assume that j = 1. If r ∈ Z, then on the hypersurface Hr :=
{y1 = r} we have ψ̃ ≥ 0. Since l ≥ 3 in the case (1.25), we see that Hr intersects
a single positive nodal domain of ψ̃ . Thus we obtain a map from Z to the positive
nodal domains of ψ̃ , which is seen to be surjective by deforming as in Part 1, and
injective since, by (1.24), ψ̃(y) ≤ 0 if cos(2πy1) = −1.
Now, by (1.15), the action of � on Z induced by the bijection just constructed is
given by

γ (r) = r + 〈γ ∗
1 , γ 〉, γ ∈ �, r ∈ Z.

Thus, if � denotes the subgroup of Z generated by
(
γ ∗

1 (γ )
)
γ∈� , then the posi-

tive nodal count of ψ is given by �Z/�, and the proof of Part 2 is completed by
Lemma 1.17.
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3. Assume, finally, that (1.25) holds and l = 2 such that

ψ̃(y) = a
(

cos(2πy1) + cos(2πy2)
)
, a > 0.

To label the positive nodal domains of ψ̃ in this case, we note that ψ̃(y) = 2a
if y ∈ Hr,s := {y ∈ R

m : y1 = r, y2 = s}, (r, s) ∈ Z
2, which yields, by the

arguments used before, a bijection between Z
2 and the positive nodal domains of

ψ̃ . The ensuing action of � on Z
2 is given by

(r, s) 
→ (
r + γ ∗

1 (γ ), s + γ ∗
2 (γ )

)
,

and another application of Lemma 1.21 completes the proof. ��
We remark in conclusion that Part 1 of the theorem easily shows that there are infi-

nitely many eigenfunctions ψ with nc(ψ) = 2, a fact that does not seem to have been
stated in the literature in this generality, though a special case has been treated in the
dissertation of A. Stern, cf. [CH, p. 396].

Of course, the basic eigenfunctions are very special, and the nodal pattern of a general
eigenfunction may be considerably more complicated. It remains a challenge to identify
larger classes of eigenfunctions which admit an explicit formula of their nodal count.

2. The Conway-Sloane Four-Parameter Family of Isospectral Tori

2.1. Geometry and spectral theory. We will now deal with an example, the four-param-
eter family of pairs of isospectral flat tori in dimension four introduced by Conway and
Sloane in [CS]; we elaborate here on the material presented in that paper and add a few
results. We begin with the following general construction.

Denote by (e j )
4
j=1 the standard basis of R

4, orthonormal with respect to the standard
scalar product 〈·, ·〉 with norm || · ||. Then we introduce the skew-symmetric 4 × 4 -
matrix,

B := (b jk) :=
⎛

⎜
⎝

0 −1 −1 −1
1 0 1 −1
1 −1 0 1
1 1 −1 0

⎞

⎟
⎠ =: (B1, B2, B3, B4), (2.1)

with (B j )
4
j=1 the column vectors of B. Using B we introduce further matrices by

G± := ±3I + B =: (g±
jk), (2.2)

S± := ∓3I + 3B =: (s±
jk). (2.3)

Note that (B j )
4
j=1 is an orthogonal basis of R

4 with ||B j ||2 = 3 for all j ; consequently,

B2 = −3I, (2.4)

G+G− = −12I, (2.5)

S+S− = −36I . (2.6)

It is convenient to bring in the orthogonal matrix

O := 1

2
(I + B) (2.7)
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such that e.g.

S± = ∓6 O∓1, (2.8)

G± B = −6 O∓1. (2.9)

Now let ( f j )
4
j=1 be any basis of R

4. Then we introduce four new bases by

γ±
j :=

∑

k

g±
jk fk, (2.10)

σ±
j :=

∑

k

s±
jk fk; (2.11)

for a given vector x ∈ R
4 we will distinguish the respective coefficients by writing

x =
∑

j

n j f j , (2.12)

=
∑

j

m±
j γ

±
j , (2.13)

=
∑

j

l±j σ
±
j . (2.14)

Now we can introduce the main objects of study in the remaining part of this paper.

Definition 2.15. We denote by �± and�± the lattices generated in R
4 by (γ±

j )
4
j=1 and

(σ±
j )

4
j=1, respectively.

Lemma 2.16. We have the following relations:

σ±
j =

4∑

k=1

(±b jk)γ
±
k , (2.17)

m± = ∓Bl±, (2.18)

n = −G∓m± = ∓6 O±1l±, (2.19)

m− = −O†m+, (2.20)

l− = O†l+. (2.21)

Proof. To prove (2.17) we compute with (2.4)

±BG± = ±B(±3I + B) = (∓3I + 3B) = S±.

The remaining relations are proved similarly. ��
It is convenient to also use the notation

Õ := 2O = I + B. (2.22)

It follows from this lemma that �± ⊂ �± such that we can decompose �± as union
of its cosets modulo �±. For integer vectors m, n, p ∈ Z

k we will employ the notation

m = n (p) ⇔ m j ≡ n j mod p, j = 1, . . . , k. (2.23)
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Corollary 2.24. If γ ∈ �± then

γ ∈ �± ⇔ Bm±(γ ) = 0 (3). (2.25)

Consequently, we have the coset decomposition

�± =
j=4⊔

j=−4

�±
j , (2.26)

where

�±
0 := �±, (2.27)

�±
j := (sgn j)γ±

| j | +�±, j �= 0. (2.28)

Proof. It follows from (2.18) that γ ∈ �± is actually in �± if and only if

3l±(γ ) = ±Bm±(γ ) ∈ 3Z ⇔ ±Bm±(γ ) = 0 (3), (2.29)

such that
(
(sgn j) γ±

j

)

| j |≤4
is a set of generators for the group �±/�±. Then an easy

inspection shows that

γ±
j = εγ±

k mod�±, 1 ≤ j, k ≤ 4, |ε| = 1,

is equivalent to j = k, ε = 1, which completes the proof. ��
The lattices �± and�± contain the common sublattices � �= := �+ ∩�− and� �= :=

�+ ∩�−, respectively, which are easily characterized as follows, using the notation

J (k) :=
4∑

i=1

ki . (2.30)

Lemma 2.31. 1. A vector γ = ∑
j m±

j γ
±
j ∈ �± is in �∓ if and only if

J (m±) is even. (2.32)

2. A vector σ = ∑
j l±j σ

±
j ∈ �± is in �∓ if and only if

J (l±) is even. (2.33)

3.

�± ∩ � �= = � �=. (2.34)

Proof. 1. We have the coefficient transformation (cf. (2.20))

m− = −O†m+, m+ = −Om−.

By definition, oi j =: 1
2 õi j with |õi j | = 1 for all i, j such that

Ji (m
+) :=

∑

j

õi j m
+
j (2.35)

has the same parity as J (m+) for all i . Hence m− ∈ Z
4 if and only if J (m+) is even,

and vice versa.



On the Nodal Count for Flat Tori

2. Noting that

l+ = Ol−, l− = O†l+,

the proof is the same as in Part 1.
3. We write

γ =
∑

j

m±
j γ

±
j =

∑

j

l±j σ
±
j ,

and we have to show that J (m±) even implies J (l±) even. But (2.18) gives l± =
± 1

3 Bm±, hence

3J (l±) = ±
∑

j,k

b jkm±
k =:

∑

k

bkm±
k .

Since all bk are odd, the assertion follows. ��
In what follows, we also need a particular group of isometries of R

4. Denote by
R ⊂ O(4) the finite abelian group generated by the reflections {τ j }4

j=1 in the hyper-
planes n j = 0,

τ j fk := (1 − 2δ jk) fk; (2.36)

we note that

τ jγ
±
j = γ∓

j . (2.37)

We denote by R+ the subgroup of orientation preserving elements of R. Then we have
the following facts.

Lemma 2.38. 1. For all j we have

τ j (�
±) ⊂ �∓; (2.39)

in particular, the lattices �+ and �− are congruent.
2. If for some ρ ∈ R and some i we have

ρ(γ±
i ) ∈ �+ ∪ �−, (2.40)

then

ρ = ±I or ρ = ±τi . (2.41)

Proof. 1. Denote by Tj the matrix of τ j in the basis ( f j ). Observe now that the rows
of Õ and their negatives give all vectors ε = (ε j )

4
j=1 ∈ {−1, 1}4 with the property

ξ(ε) :=
∏

j

ε j = −1,

such that the rows of Õ† and their negatives yield all vectors ε ∈ {−1, 1}4 with the
property ξ(ε) = 1. It follows that

Tj Õ±1 = Õ∓1 Pj , (2.42)

for a certain permutation matrix Pj = (δr,σ j (s)α j (s))rs =: Pσ j ,α j , where σ j ∈ S4,
viewed as the group of bijections of N4 = {1, 2, 3, 4}, and α : N4 → {−1, 1}.
Equation (2.42) implies the assertion in view of (2.19).



J. Brüning, D. Fajman

2. Consider an element ρ ∈ R, such that ρ fk =: εk fk for certain numbers εk ∈ {−1, 1}.
The property (2.40) together with Corollary 2.24 implies the relation

ργ
ξ
i = αγ

η
j + σ,

with ξ, η ∈ {+,−}, j = j (ρ, i, ξ), α ∈ {−1, 0, 1}, and σ ∈ �η. Calculating mod 3
in the n- coordinates, we find with (2.19) and Corollary 2.24 the identities

εkbki = αbkj (3),

for all k. If i �= j , we put k = i and obtain α = 0, contradicting (2.25). Hence
we must have i = j which gives |α| = 1 and εk = α for k �= i and completes the
proof. ��

We remark for later use that each σ j is a 3-cycle and hence even, and that the permu-
tation matrices form a group under multiplication, satisfying the rules

Pσ1,α1 Pσ2,α2 = Pσ1σ2,(σ
∗
2 α1)α2 , (2.43)

P−1
σ,α = Pσ−1,(σ−1)∗α; (2.44)

(Pσ,α)
† = Pσ−1,((σ−1)∗α)−1). (2.45)

We turn to the spectral theory of the Laplacians, �±, defined on the flat tori T ±
which are associated to the dual lattices of �±; we will express the results in terms of
the lattices �±. For this, we have to specify the metric properties of the basis ( f j ). We
follow [CS] in assuming from now on that our basis is orthogonal, i.e. that we have

〈 f j , fk〉 = δ jka2
j , (2.46)

for certain positive numbers (a j )
4
j=1. Thus if γ = ∑4

j=1 n j f j ∈ �± then

ψγ ∈ E±(λ) := ker(�± − λI ) ⇔ (2.47)

|γ |2 =
∑

j

n2
j a

2
j = (4π2)−1λ ⇔ (2.48)

γ ∈ �±(λ). (2.49)

Since γ and −γ have the same length, the cardinality of �±(λ) is even and at least 2 for
positive eigenvalues.

Using the group R introduced above we define the set, for γ ∈ �±(λ),

�±
γ (λ) := Rγ ∩ �±, (2.50)

such that

�±
γ (λ) ⊂ �±(λ).

The following result is obvious.
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Lemma 2.51. If the numbers (a2
j )

4
j=1 are linearly independent over Q then for γ ∈

�±(λ),
�±(λ) = �±

γ (λ), (2.52)

and

�
{
�+
γ (λ) ∪ �−

γ (λ)
}

≤ 16. (2.53)

The spaces �±
γ (λ) can be described quite explicitly.

Theorem 2.54. 1. If γ ∈ �±
j , j �= 0, then

�±
γ (λ) = {γ,−γ }, (2.55)

�∓
γ (λ) = {τ jγ,−τ jγ }. (2.56)

2. If γ ∈ � �=, then

�+
γ (λ) = �−

γ (λ). (2.57)

3. If γ ∈ �±\� �=, then

�±
γ (λ) = R+γ, �∓

γ (λ) = τ1 R+γ, (2.58)

and

� �±
γ (λ) = � �∓

γ (λ) = 8. (2.59)

Proof. 1. The statement follows immediately from Lemma 2.38, Part 2.
2. This statement follows from Lemma 2.38, Part 1.
3. For γ ∈ �+\� �= we have from (2.21) and Lemma 2.31, Part 2,

ni (γ ) = (−6 Ol+(γ ))i = −3
∑

j

õi j l
+(γ ) j = J (l+(γ )) = 1 (2),

since |õi j | = 1 for all i, j ; in particular, ni (γ ) = 0 for all i . The proof for γ ∈ �−
is similar. This together with (2.39) proves the assertion. ��

We now discuss the relationship between the geometry and the spectral theory asso-
ciated with the lattices �+ and �−. For the geometry, we get the following result.

Lemma 2.60. 1. If ai = a j for i �= j then�+ and�− are congruent and the associated
tori T + and T − are isometric.

2. If the numbers (a2
i )

4
i=1 are linearly independent over Q then the lattices �+ and �−

are not congruent.

Proof. 1. We have to show that there are matrices M ∈ GL(4,Z) and O ∈ O(4) such
that det M = ±1 and

G−�(a) = MG+�(a)O, (2.61)

where �(a) := (δlkak). Now it is easily verified that we can find, for all i, j , a
permutation matrix Pi j = P(i j),αi j , with (ij) the transposition commuting i and j
and αi j (i) = αi j ( j) = 1, such that

B Pi j = −Pi j B;
cf. the remark after Lemma 2.39. Then (2.61) is satisfied with Pi j =: M =: O.
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2. Arguing by contradiction, we assume that �+ and �− are congruent. Then there is
O ∈ O(4) with

O(�±) = �∓. (2.62)

If O = (oi j ) with respect to ( fk)k then we find

a2
i =

∑

j

o2
i j a

2
j , (2.63)

for all i . Now, from (2.62) and (2.5) we have with some T ∈ PGL(4,Z),

−12oi j = (G−T G−)i j ∈ Q,

and by linear independence over Q we derive from (2.63)

o2
i j = δi j .

Hence O ∈ R and the proof is completed by applying Lemma 2.38, Part 2. ��
On the basis of these facts, Conway and Sloane conjectured that

the lattices �+ and �− are not congruent if ai �= a j , i �= j, (2.64)

and they verified this conjecture for the classically integral lattices among them with
determinant (a1a2a3a4)

2 ≤ 1000. Recently, Cervino and Hein proved the conjecture in
full generality using their theory of lattice invariants [CeHe].

Nevertheless, the lattices �+ and �− are always isospectral which is the key obser-
vation of Conway and Sloane. This fact has become much more transparent due to
their geometric explanation of these lattice pairs; in fact, as an easy consequence of
Lemma 2.38 we find

Theorem 2.65. For all choices of the numbers (ai )
4
1, the lattices �+ and �− are iso-

spectral. In fact, the map

� : �+ → �−,

defined by

�|�0 := τ1, (2.66)

�|� j := τ j , j �= 0, (2.67)

maps �+(λ) bijectively to �−(λ), for all λ ∈ R+.

3. Isonodality

We now turn to the question whether isonodality resolves isospectrality in the example
just studied, i. e. whether the tori T + and T − can be distinguished by their nodal count.
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For tori, the notion of isonodality as defined in (0.6), (0.7) can be refined as follows.
We call the tori T + and T − isonodal of order p, p ∈ N if there is a length preserving
bijection

�p : �+ → �−

such that for all λ > 0, the pair of eigenfunctions

p∑

j=1

α jψγ j and
p∑

j=1

α jψ�p(γ j )

has the same nodal count for any choice of (γ j ) ⊂ �+(λ) and (α j ) ⊂ C. Then one may
hope that already the nodal count of order one may distinguish the tori T + and T −.

In Subsect. 3.1 we show that this is not the case. Subsection 3.2 deals with isonodality
in general; we show that even the full nodal count does not distinguish T + and T − if
the numbers (a2

j ) j are linearly independent over Q, thus disproving the conjecture men-
tioned in the Introduction, in view of Lemma 2.60. Finally, in Subsect. 3.3 we add some
evidence that the nodal count does distinguish the tori if we allow general parameters
(a2

j ) j .

3.1. Isonodality of order one. We prove the following result.

Theorem 3.1. The tori T + and T − are isonodal of order one.

Proof. The theorem will be proved if we construct a bijective map

�1 : �+ → �−

which preserves the length and the nodal count. We will use for γ ∈ �± the coordinates
n±,m±, l± in the respective bases, as before, and we will also use the abbreviation

[m] := gcd (m j ) j , (3.2)

for m ∈ Z
4. Then we need to construct �1 in such a way that, for all γ ,

|n(�1(γ ))| = |n(γ )|, [m−(�1(γ ))] = [m(γ )].
We begin by decomposing

�+ = � �= ∪
⋃

j

�̇+
j , (3.3)

where �̇+
j := �+

j \� �=.

Case 1. γ ∈ � �=. Clearly, we obtain an isospectral and isonodal bijection�1 : � �= → � �=
by defining

�1|� �= := I� �= . (3.4)

Case 2: γ ∈ �̇+
j , j �= 0. Now we define a bijection from �̇+

j to �̇−
j by

�1|�̇ j := �|�̇+
j = τ| j ||�̇+

j . (3.5)

The assertion is a consequence of the following result.
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Lemma 3.6. If γ ∈ �̇±
j , j �= 0, then

[m±(γ )] = [n(γ )]. (3.7)

Proof. All coordinates will be taken for γ which we will suppress in the following
formulas. From (2.19), we see that [m±]|[n].

From (2.19) and (2.5) we get the relation

G±n = 12m±,

hence it is enough to prove that 2 and 3 are not common divisors of (n j )
4
j=1.

As in the proof of Theorem 2.54, Part 3, we deduce from the assumption γ /∈ � �=
that all n±

k are odd; this rules out the common divisor 2.
Assume next that

n = 3n̄, n̄ ∈ Z
4.

Invoking (2.19) once more we obtain

−Bm± = 3(n̄ ∓ m±),

which yields with (2.4)

m± = B(n̄ ∓ m±) =: ∓Bl±.

Since l± ∈ Z
4, it follows from (2.18) that γ± ∈ �±, contradicting the assumption and

completing the proof. ��
Case 3. γ ∈ �̇+

0 = �+\� �=. This case is more subtle since it may happen that [m+(γ )] =
1 but [m−(τ jγ )] = 3 for some j . Now it follows from (2.42) and (2.43) through (2.45)
that R+ acts on �̇±

0 while each τ j will map �̇±
0 to �̇∓

0 . Hence it is reasonable to look
simultaneously at the orbit

R+γ = {±τ1τ jγ }4
j=1 ⊂ �+,

and its image in �− under any of the τ j ,

R−γ = {±τ jγ }4
j=1.

We parametrize �̇+
0 by l+ ∈ Z

4 satisfying J (l+) = 1 (2). We need the following result.

Lemma 3.8. 1. For γ ∈ �̇±
0 with [l±(γ )] = 1 the following conditions are equivalent.

[m±(γ )] = 3; (3.9)

l±(γ ) = εBi (3) for some i ∈ N4 and ε ∈ {−1, 1}; (3.10)

γ ∈ 3�̇±
j for some j �= 0. (3.11)

2. For γ ∈ �̇±
0 with [l±(γ )] = 1 we have

�
(
R+γ ∩

⋃

j �=0

3�̇±
j

) = �
(
R−γ ∩

⋃

j �=0

3�̇∓
j

) ∈ {0, 2}. (3.12)
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Proof. 1. Recall that B j denotes the j th column of the matrix B. If (3.9) holds then

m± = ∓Bl± = 0 (3),

and we may assume that |l±j | ≤ 1 for all j . Thus we get

m± = 3m̄±, for some m̄± ∈ Z
4, (3.13)

hence

l± = ±Bm̄±.

This implies

4 ≥ |l±|2 = 3
∑

j

(m̄±
j )

2 ≥ 1, (3.14)

hence (3.10).
If (3.10) is satisfied then we have for some l̃± ∈ Z

4,

m± = ∓B(εB j + 3l̃±) = ±3ε(e j + Bl̃±),

hence, for some σ± ∈ �±,

γ± =: ±3ε
(
γ±

j + σ±) ,

which gives (3.11). Finally, (3.11) clearly implies (3.9) which completes the proof.
2. Note first that the equivalent conditions in Part 1 are satisfied by γ and −γ simul-

taneously, and that

� R±γ = 8,

cf. the proof of Lemma 3.6, Part 1. Assume next that γ ∈ �̇±
0 ∩ 3�̇±

i and that for
some j �= k and some l we have τ jτkγ ∈ 3�̇±

l . Denoting by Ts the matrix of τs in
the n-coordinates as before, we find from (3.10) and (2.19) the relation

Tk Tj Bi = ±Bl (3),

which is easily seen to be impossible.

Finally, if γ ∈ �̇±
j then, clearly, τ jγ ∈ �̇∓

j , completing the proof of Part 2. ��
Now we can define �1 also for γ ∈ �̇±

0 . If

�
(
R+(γ /[l±(γ )]) ∩

⋃

j �=0

3�̇±
j

) = 0, (3.15)

then we put for ρ ∈ R+,

�1ργ := τ1ργ.

If, however,

�
(
R+(γ /[l±(γ )]) ∩

⋃

j �=0

3�̇±
j

) = 2, (3.16)
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then we may assume that

γ ∈ [l±(γ )]3�̇±
j

for some j �= 0, and we define for ρ ∈ R+

�1ργ := τ jργ.

This completes the proof of Theorem 3.1. ��

3.2. Isonodality of order two: The counterexamples. In this subsection we show that the
Conway-Sloane family of isospectral flat 4-tori, treated in Sect. 2, provides counterex-
amples to the conjecture that the nodal count resolves isospectrality. In fact, this is the
case whenever

the numbers (a2
j )

4
j=1 are linearly independent over Q. (3.17)

We collect what we have already shown in this case in the following statement which
follows from Lemma 2.60, Theorem 2.54, and Theorem 2.65.

Theorem 3.18. Assume the condition (3.17); then the following assertions hold.

1. The flat tori T + and T − are not isometric.
2. The eigenspaces of T ± are given by

E±(λ) = {ψγ : γ ∈ Rγ ∩ �±(λ) = �±
γ (λ)},

and

�+
γ (λ) =

⎧
⎪⎨

⎪⎩

{±γ }, γ ∈ ⋃
j �=0 �̇

+
j ,

{±τ jτ1γ }4
j=1, γ ∈ �̇+

0 ,

�−
γ (λ), γ ∈ � �=.

(3.19)

3. The map �1 constructed in Theorem 3.1 induces a bijection E+(λ) → E−(λ) pre-
serving the nodal count of order one, for all λ ∈ spec T +.

We now want to prove the following result.

Theorem 3.20. Under the condition (3.17), the tori T + and T − are isospectral and
isonodal.

To prove this theorem, we have to define a bijection

�2 : E+(λ) → E−(λ),

which preserves the nodal count, by (0.5). In view of Theorem 1.21, this is achieved
already by the map �1 constructed in Theorem 3.1 if � �+(λ) ≤ 2. Hence we may
assume that

�+(λ) = R+γ1
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for some γ1 ∈ �̇+
0 , and we write γ j := τ jτ1γ1, j ∈ N4. Then � �+(λ) = 8 and all

eigenfunctions in E+(λ) are basic, by Theorem 1.21. Thus we can write the general
element of E+(λ) as

ψ =
4∑

j=1

(
bγ jψγ j + b−γ jψ−γ j

)
.

It is then natural to introduce

�2ψ :=
4∑

j=1

(
bγ jψ�1γ j + b−γ jψ−�2γ j

)
, (3.21)

since we see, again from Theorem 1.21, that

nc(ψ) = nc(�2ψ),

provided that

c(ψ) := � { j ∈ N4 : aγ := a j := |bγ j |2 + |b−γ j |2 > 0} �= 2.

In case c(ψ) = 2, i.e. we can continue to use the same definition unless

a1 = a2.

Then the nodal count of ψ is given by [m+(γ1)∧ m+(γ2)] which need not coincide with
[m+(�1γ1)∧m+(�1γ2)]. But in view of our definition of isonodality, cf. (0.5), it suffices
to show that the sequences

([m+(γ1) ∧ m+(γ2)])γ1,γ2∈R+γ0

and

([m−(�1γ1) ∧ m−(�1γ2)])γ1,γ2∈R+γ0

coincide up to a permutation.
To achieve this, we parametrize �̇+

0 by the set {l ∈ Z
4 : J (l) = 1 (2)}. In Table 1,

we have listed elements m±
( j)(l) which, together with their negatives, give the m-coor-

dinates of the orbit R±γ0, in terms of l = l+(γ ) ∈ Z
4. To show that the sequences([m+

( j)(l)∧ m+
(k)(l)]

)
1≤ j<k≤4 and

([m−
( j)(l)∧ m+

(k)(l)]
)

1≤ j<k≤4 coincide up to a permu-
tation, we compare them in Tables 2, 3, and 4 in pairs which already show the desired
property; we have denoted these subsets by

(
p±
(2 j−1)(l), p±

(2 j)(l)
)
, where j = 1, 2, 3.

The tables then show that only certain specific quadratic forms in the variables l j occur
in the formation of the two strings of six wedge products. The following lemma exploits
this and will prove Theorem 3.20, by inspecting the tables.

Lemma 3.22. Let a, b, c, d ∈ Z be given with

ab + cd = 1 (2), (3.23)

ac + bd = 0 (2), (3.24)
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and define

A := ab, B := cd, (3.25)

2C := ac − bd, 2D := ac + bd. (3.26)

Let

α := [A, B,C, D] (3.27)

be the greatest common divisor. Then the functions

φ1 : {−1, 1} � j 
→ [A + B + jC, 3α] ∈ Z, (3.28)

φ2 : {−1, 1} � j 
→ [A − B + j D, 3α] ∈ Z, (3.29)

are equivalent (in the sense that φ2 = φ1 ◦ ψ for some bijection ψ of {−1, 1}).
Proof. Let us remark first that the symmetries

a ↔ c, b ↔ d, (3.30)

a ↔ b, c ↔ d, (3.31)

a ↔ −a or b ↔ −b, (3.32)

leave the problem invariant in the sense that they replace φ1 and φ2 by a pair which is
equivalent if and only if φ1 and φ2 are equivalent.

Next we observe thatα is odd since it divides A+B = ab+cd. It follows that any prime
divisor, p, of α divides the numbers ab, cd, ac, bd hence w.l.o.g. a =: pa′, d =: pd ′.
Thus, if the assertion of the lemma holds for a′, b, c, d ′ then it also holds for a, b, c, d
such that it is enough to treat the case

α = 1. (3.33)

Now it is readily computed that

A + B ± C = a(b ∓ c)± d(b ± c) (3), (3.34)

A − B ± D = a(b ± c)∓ d(b ± c) (3). (3.35)

It remains to discuss two cases.

Case 1. b2c2 = 1 (3). We then may assume w.l.o.g. that b = c (3), and we find

A + B + C = −bd (3), A + B − C = −ba, (3) (3.36)

A − B + D = bd (3), A − B − D = −ba (3), (3.37)

proving the lemma in this case.

Case 2. b2c2 = 0 (3). If b = c = 0 (3) then clearly A + B ± C = A − B ± D = 0 (3).
Otherwise, w.l.o.g. we may assume b = 1, c = 0 (3) which gives

A + B ± C = b(a ± d), A − B ± D = b(a ∓ d). (3.38)

This settles also the second case and completes the proof of the lemma. ��

3.3. Some remarks concerning the general case. The general case, where condition
(3.17) is not assumed, seems to be much more sensible to nodal counting than the
“rigid” situation providing our counterexamples. So far, we have only sporadic evidence
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corroborating this statement which, nevertheless, has some interest. The highest “degen-
eration” should occur if (a2

i )
4
i=1 ⊂ N in which case we can test isonodality numerically

for each concrete choice of the parameters. A typical result is the following.

Theorem 3.39. Assume that (a2
i )

4
i=1 ⊂ N, and that a2

1 < a2
2 < a2

3 < a2
4 < 20. Then the

associated tori T + and T − are not isonodal of order two, hence are not isometric.

The proof of this statement is contained in [Kl1], together with a number of similar
results dealing with other families of isospectral tori defined in [CS]. It would be inter-
esting to find a proof of the conjecture of Conway and Sloane, see (2.64), using the nodal
count.

As mentioned in the Introduction, in [GSS] a different nodal count was introduced for
flat tori which distinguishes the tori T + and T − whenever all parameters are different,
as shown rigorously in [BKP]. However, it is hard to see how to define an analogue of
this way of counting on general closed Riemannian manifolds.
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Appendix

See Tables 1, 2, 3 and 4.

Table 1. The vectors m±
( j) in terms of l = l+(γ ) with permutation of their entries

m+
(1) =

⎛

⎜
⎝

−l1 − l2 + l3
−l1 + l2 − l4
−l1 − l3 + l4
l2 + l3 + l4

⎞

⎟
⎠

l1 
→−l1−→
⎛

⎜
⎝

l1 − l2 + l3
l1 + l2 − l4
l1 − l3 + l4
l2 + l3 + l4

⎞

⎟
⎠ = m−

(1)

⏐
⏐⏐ 

l1 
→ −l1
l3 
→ −l3

l3 
→ −l3
l4 
→ −l4

⏐
⏐⏐ 

m+
(2) =

⎛

⎜
⎝

l1 − l2 − l3
l1 + l2 − l4

−l1 − l3 − l4
−l2 + l3 − l4

⎞

⎟
⎠

l4 
→−l4−→
⎛

⎜
⎝

l1 − l2 − l3
l1 + l2 + l4

−l1 − l3 + l4
−l2 + l3 + l4

⎞

⎟
⎠ = m−

(2)

⏐⏐⏐
 

l3 
→ −l3
l4 
→ −l4

l2 
→ −l2
l3 
→ −l3

⏐⏐⏐
 

m+
(3) =

⎛

⎜
⎝

l1 − l2 + l3
−l1 − l2 − l4
l1 − l3 − l4
−l2 − l3 + l4

⎞

⎟
⎠

l2 
→−l2−→
⎛

⎜
⎝

l1 + l2 + l3
−l1 + l2 − l4
l1 − l3 − l4
l2 − l3 + l4

⎞

⎟
⎠ = m−

(3)

⏐
⏐⏐ 

l2 
→ −l2
l4 
→ −l4

l1 
→ −l1
l2 
→ −l2

⏐
⏐⏐ 

m+
(4) =

⎛

⎜
⎝

−l1 − l2 − l3
l1 − l2 − l4
l1 − l3 + l4
l2 − l3 − l4

⎞

⎟
⎠

l3 
→−l3−→
⎛

⎜
⎝

−l1 − l2 + l3
l1 − l2 − l4
l1 + l3 + l4
l2 + l3 − l4

⎞

⎟
⎠ = m−

(4)
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Table 2. The vectors p±
1 and p±

2 in terms of l = l+(γ )

a = l1 + l4 A = ab = l2
1 − l2

4

b = l1 − l4 B = cd = l2
2 − l2

3
c = l2 + l3 C = 1

2 (ac − bd) = l1l3 + l2l4

d = l2 − l3 D = 1
2 (ac + bd) = l1l2 + l3l4

p+
1 =

⎛

⎜⎜
⎜⎜⎜
⎝

A + B + C
(A + B + C)− 3C − 3D
(A + B + C)− 3B − 3C
−(A + B + C) + 3A + 3C
A + B + C − 3C + 3D
−(A + B + C)

⎞

⎟⎟
⎟⎟⎟
⎠

p−
1 =

⎛

⎜⎜
⎜⎜⎜
⎝

−(A − B + D)
−(A − B + D)− 3B + 3D
−(A − B + D) + 3C + 3D
(A − B + D) + 3C − 3D
−(A − B + D) + 3A + 3D
A − B + D

⎞

⎟⎟
⎟⎟⎟
⎠

p+
2 =

⎛

⎜⎜
⎜⎜⎜
⎝

−(A + B − C)
−(A + B − C)− 3C + 3D
−(A + B − C) + 3A − 3C
(A + B − C)− 3B + 3C
−(A + B − C)− 3C − 3D
A + B − C

⎞

⎟⎟
⎟⎟⎟
⎠

p−
2 =

⎛

⎜⎜
⎜⎜⎜
⎝

−(A − B − D)
−(A − B − D) + 3A − 3D
−(A − B − D) + 3C − 3D
A − B − D + 3C + 3D
−(A − B − D)− 3B − 3D
A − B − D

⎞

⎟⎟
⎟⎟⎟
⎠

Table 3. The vectors p±
3 and p±

4 in terms of l = l+(γ )

a = l1 + l2 A = ab = l2
1 − l2

2

b = l1 − l2 B = cd = l2
4 − l2

3
c = l4 + l3 C = 1

2 (ac − bd) = l1l3 + l2l4

d = l4 − l3 D = 1
2 (ac + bd) = l1l4 + l2l3(=: E)

p+
3 =

⎛

⎜⎜
⎜⎜⎜
⎝

A − B + D + 3B − 3D
A − B + D
A − B + D − 3C − 3D
−(A − B + D)− 3C + 3D
A − B + D
−(A − B + D) + 3A + 3D

⎞

⎟⎟
⎟⎟⎟
⎠

p−
3 =

⎛

⎜⎜
⎜⎜⎜
⎝

−(A + B + C) + 3C + 3D
−(A + B + C)
−(A + B + C) + 3B + 3C
A + B + C − 3A − 3C
−(A + B + C)
A + B + C − 3C + 3D

⎞

⎟⎟
⎟⎟⎟
⎠

p+
4 =

⎛

⎜⎜
⎜⎜⎜
⎝

(A − B − D)− 3A + 3D
A − B − D
(A − B − D)− 3C + 3D
−(A − B − D)− 3C − 3D
A − B − C
−(A − B − D)− 3B − 3D

⎞

⎟⎟
⎟⎟⎟
⎠

p−
4 =

⎛

⎜⎜
⎜⎜⎜
⎝

(A + B − C) + 3C − 3D
A + B − C
(A + B − C)− 3A + 3C
−(A + B − C) + 3B − 3C
A + B − C
−(A + B − C)− 3C − 3D

⎞

⎟⎟
⎟⎟⎟
⎠

Table 4. The vectors p±
5 and p±

6 in terms of l = l+(γ )

a = l1 + l3 A = ab = l2
1 − l2

3

b = l1 − l3 B = cd = l2
4 − l2

2
c = l4 + l2 C = 1

2 (ac − bd) = l1l2 + l3l4

d = l4 − l2 D = 1
2 (ac + bd) = l1l4 + l2l3

p+
5 =

⎛

⎜⎜⎜
⎜⎜
⎝

(A + B + C)− 3C − 3D
(A + B + C)− 3B − 3C
A + B + C
−(A + B + C)
(A + B + C)− 3A − 3C
−(A + B + C) + 3C − 3D

⎞

⎟⎟⎟
⎟⎟
⎠

p−
5 =

⎛

⎜⎜⎜
⎜⎜
⎝

−(A − B + D) + 3B + 3D
−(A − B + D) + 3C + 3D
−(A − B + D)
A − B + D
−(A − B + D) + 3C − 3D
(A − B + D)− 3A − 3D

⎞

⎟⎟⎟
⎟⎟
⎠

p+
6 =

⎛

⎜⎜⎜
⎜⎜
⎝

−(A + B − C)− 3C + 3D
−(A + B − C) + 3A − 3C
−(A + B − C)
A + B − C
−(A + B − C) + 3B − 3C
(A + B − C) + 3C + 3D

⎞

⎟⎟⎟
⎟⎟
⎠

p−
6 =

⎛

⎜⎜⎜
⎜⎜
⎝

−(A − B − D) + 3A − 3D
−(A − B − D) + 3C − 3D
−(A − B − D)
A − B − D
−(A − B − D)− 3C − 3D
(A − B − D) + 3B + 3D

⎞

⎟⎟⎟
⎟⎟
⎠
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