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1. INTRODUCTION

Let n and m be positive integers, n � m, and C(y, x) > 0 and V (y, x) be smooth real
functions defined on T × R

n, where T stands for the n-dimensional torus with the coordinates
y = (y1, . . . , yn), yj ∈ [2π] and x = (x1, x2, . . . , xm), i.e., C and V are 2π-periodic with respect to
each of the variables y1, . . . , yn. Further, let m smooth functions Θj (phases) be given; it is assumed
that the phases Θj are locally not collinear, i.e., that the rank of the matrix Θx of the rows. is
equal to n for any x. As was proved in [1, 2] (see also [3, 4, 5, 6]), when constructing rapidly varying
asymptotic solutions of equations with rapidly oscillating coefficients

i
∂ψ

∂t
= (−〈∇, C2(

Θ(x)

μ
, x)∇〉 + V )ψ and

∂2ψ

∂t2
= −(−〈∇, C2(

Θ(x)

μ
, x)∇〉 + V )ψ,

where μ stands for a small positive parameter, the following problem arises: to construct eigenfunc-
tions and eigenvalues of a family of elliptic operators on the torus T which depend on m-dimensional
parameters (column vectors) p = (p1, . . . , pm)T ∈ R

m and x = (x1, . . . , xm)T ∈ K, where K stands
for some compactum in R

m. This family of operators is defined as follows. Introduce the following
notation: denote by 〈·, ·〉 the inner product in R

m, by ∇y = ∂
∂y the vector (column)-operator of the

gradient in R
n
y , and by ∇θ

y the vector-operator of the skew gradient ∇θ
y = Θx(x)∇y. Further, write
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�Θ
y = 〈∇Θ

y , C
2(y, x)∇Θ

y 〉 and D = 〈p,∇Θ
y 〉. Introduce the space L2(T) with “normalized” inner

product and the norm

(φ1, φ2) =
1

(2π)n

∫
T

φ1(y)φ2(y)dy2, ‖φ‖ =
√

(φ, φ), (1.1)

where the bar stands for complex conjugation, and the average over the torus is

〈w〉T =
1

(2π)2

∫ 2π

0

∫ 2π

0

w(y)dy1dy2. (1.2)

Then the operators we are interested in and the corresponding spectral problems in the space
related spectral problems in the space L2(T) are of the form1

H = 〈(p − i∇Θ
y ), C2(y, x)(p − i∇Θ

y )〉 = −�Θ
y − i(DC2(y, x) + C2(y, x)D) + C2(y, x)p2, (1.3)

Hχ(y, x, p) = L(x, p)χ(y, x, p), χ ∈ L2(T), ‖χ(y, x, p)‖ = 1. (1.4)

Note that, setting χ = exp(i(Θ∗
xΘx)−1〈Θ∗

xp, y〉)χb, one can reduce the latter problem to that for
Bloch functions χb for the Laplace operator −�θ

y.

It follows from the general theory of elliptic operators on compact manifolds that H with the
domain C∞(T) is essentially selfadjoint in L2(T) and has a complete system of eigenfunctions χk,
k = 0, 1, . . . , with real eigenvalues Lk(x, p) (see, e.g., [7]). Note that, for p = 0, the operator H
becomes −�Θ

y , which is an elliptic operator on the torus T, and its minimum eigenvalue and the
corresponding normalized eigenfunction can readily be found and are well known,

L0(x, 0) = 0, χ0(y, x, 0) = 1, (1.5)

and here the eigenvalue L0(x, 0) = 0 is nondegenerate, and hence is separated from the other
eigenvalues. These assertions are established in the standard way by using the “energy equation”

(−�Θ
y u, u)L2(T) = (C2∇Θ

y u,∇Θ
y u)L2(T).

Since, everywhere below, we restrict ourselves to the minimal eigenvalue and to the corresponding
eigenfunction, in order to avoid cumbersome notation, we omit the superscript 0 in our notation
and write

L0 = L, χ0 = χ.

As was proved in [8], for x in a compact set K in R
3 and for p sufficiently small, the eigenvalue L

of the operator H is nondegenerate and analytic in p, and the function χ(y, x, p) can be chosen to
be smooth with respect to (x, p) and analytic in p (for a simple proof of these assertions, see also
[9]).

The problem is to find χ and E . Represent the function C in the form

C2 = C2
0 + ã(y, x), C2

0 = 〈C2〉T. (1.6)

For a variable function C2, it is practically impossible to evaluate χ and L explicitly, and one may
speak only of the perturbation theory with respect to the parameters p in a neighborhood of the
point p = 0 or under the assumption that ã(y) is small, i.e., under the assumption that ã = δa(y),
where δ is a small positive parameter. For applications, it is of interest to have formulas for the
expansion of L in the parameters (variables) p up to order four inclusive. The objective of this
paper is to obtain formulas of high-order perturbation theory with respect to p and/or δ.Certainly,
the way to derive these formulas in well known in operator theory. However, we are interested in
explicit formulas and in a specific case.

The paper is organized as follows. In Section 2 we present formulas of abstract perturbation
theory for a selfadjoint operator of the form A+εB, and apply these formulas to obtain an expansion
of L with accuracy up to |p|5 in Section 3 (Proposition 1) and realize these expansions in the single-
phase case in Sec. 4. Formulas for L in the multi-phase case, which are obtained with accuracy up
to O(δ3), are presented in Section 4 (Proposition 2).

1We practically follow the notation introduced in [1]; however, only to simplify this notation, in this paper we omit

the subscript “0” at the symbols L, χ, and H.
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2. HIGH-ORDER FORMULAS OF ABSTRACT PERTURBATION THEORY

Let us first recall some useful formulas of abstract perturbation theory which we could not find
in the literature. Introduce a fictitious parameter ε (which has the meaning of |p| or δ), represent
the problem of zero-order approximation in the form

(A+ εB)ϕ = λϕ, ‖ϕ‖ = 1, (2.1)

and assume that λ = λ(ε) is a multiplicity-free eigenvalue for sufficiently small values of ε. The
selfadjoint operators A and B acting on some Hilbert space H with inner product (· , ·) can also
depend on the parameter ε, but only regularly, and we shall present this dependence in our fnal
computations only. The first equation implies an obvious inequality which is very useful below:

λ =
(
(A+ εB)ϕ,ϕ

)
. (2.2)

By the general operator theory, we have the expansions

λ = λ0 + ελ1 + ε2λ2 + . . . , ϕ = ϕ0 + εϕ1 + ε2ϕ2 + . . . , (2.3)

where one should keep in mind in what follows that, in contrast to λk, the functions ϕk are complex-
valued in general. Our objective is to construct the simplest possible formulas for λ0, λ1, . . . , λ4.

Lemma 1. The following equations hold :

λ1 =
(
ϕ0, Bϕ0

)
, λ2 =

(
ϕ1, (B − λ1)ϕ0

)
, λ3 =

(
ϕ1, (B − λ1)ϕ1

)
,

λ4 =
(
ϕ2, (B − λ1)ϕ1

)
+ λ2

(
ϕ0, ϕ2

)
,

(2.4)

where the functions ϕ0, ϕ1, ϕ2 can be found from the equations (2.14)–(2.16) and satisfy the con-
ditions (2.9)–(2.11).

In specific calculations, it is useful that all the λk are real, according to the properties of eigen-
values of selfadjoint operators. Certainly, this fact can be verified directly.

Proof. Substitute the decomposition (2.3) into the equations and relations (2.1)–(2.2), perform
the corresponding multiplications, and equate the coefficients at the powers of ε to zero. By (2.2),
this gives

λ0 =
(
Aϕ0, ϕ0

)
,

λ1 =
(
Bϕ0, ϕ0

)
+

(
Aϕ1, ϕ0

)
+
(
Aϕ0, ϕ1

)
(2.5)

λ2 =
(
Bϕ1 ϕ0

)
+

(
Aϕ2 ϕ0

)
+

(
Bϕ0 ϕ1

)
+

(
Aϕ1 ϕ1

)
+

(
Aϕ0 ϕ2

)
(2.6)

λ3 =
(
Bϕ2, ϕ0

)
+

(
Aϕ3, ϕ0

)
+
(
Bϕ1, ϕ1

)
+

(
Aϕ2, ϕ1

)
+

(
Bϕ0, ϕ2

)
+

(
Aϕ1, ϕ2

)
+

(
Aϕ0ϕ3

)
, (2.7)

λ4 =
(
Bϕ3, ϕ0

)
+

(
Aϕ4, ϕ0

)
+
(
Bϕ2, ϕ1

)
+

(
Aϕ3, ϕ1

)
+

(
Bϕ1, ϕ2

)
+

(
Aϕ2, ϕ2

)
+

(
Bϕ0, ϕ3

)
+

(
Aϕ1, ϕ3

)
+

(
Aϕ0, ϕ4

)
, (2.8)

and, by the second relation in (2.2), we obtain

(
ϕ0, ϕ0

)
= 1, (2.9)(

ϕ1, ϕ0

)
+

(
ϕ0, ϕ1

)
= 0, (2.10)(

ϕ2, ϕ0

)
+

(
ϕ1, ϕ1

)
+

(
ϕ0, ϕ2

)
= 0, (2.11)(

ϕ3, ϕ0

)
+

(
ϕ2, ϕ1

)
+

(
ϕ1, ϕ2

)
+

(
ϕ0, ϕ3

)
= 0, (2.12)(

ϕ4, ϕ0

)
+

(
ϕ3, ϕ1

)
+

(
ϕ2, ϕ2

)
+

(
ϕ1, ϕ3

)
+

(
ϕ0, ϕ4

)
= 0, (2.13)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 19 No. 3 2012
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while the first relation in (2.2) gives

Aϕ0 = λ0ϕ0, (2.14)

Aϕ1 = λ0ϕ1 + λ1ϕ0 −Bϕ0, (2.15)

Aϕ2 = λ0ϕ2 + λ2ϕ0 + λ1ϕ1 −Bϕ1, (2.16)

Aϕ3 = λ0ϕ3 + λ3ϕ0 + λ2ϕ1 + λ1ϕ2 −Bϕ2, (2.17)

Let us “transfer” the operator A in relations (2.5)–(2.21) to functions ϕk with lesser indices and
replace the expressions Aϕk by the right-hand sides of (2.14)–(2.17). This gives

λ1 =
(
Bϕ0, ϕ0

)
+ λ0

((
ϕ1, ϕ0

)
+

(
ϕ0, ϕ1

)) by (2.10)
====

(
Bϕ0, ϕ0

)
, (2.18)

λ2 =
(
Bϕ1, ϕ0

)
+ λ0

((
ϕ2, ϕ0

)
+

(
ϕ0, ϕ2

))
+
(
Bϕ0, ϕ1

)
+

(
λ0ϕ1 + λ1ϕ0 −Bϕ0, ϕ1

)
(2.19)

=
(
Bϕ1, ϕ0

)
+ λ0

((
ϕ2, ϕ0

)
+

(
ϕ0, ϕ2

)
+

(
ϕ1, ϕ1

))
+ λ1

(
ϕ0, ϕ1

) by (2.11)
====

(
(B − λ1)ϕ1, ϕ0

)
,

λ3 =
(
Bϕ2, ϕ0

)
+ λ0

((
ϕ3, ϕ0

)
+

(
ϕ0, ϕ3

))
+

(
Bϕ1, ϕ1

)
+

(
ϕ2, λ0ϕ1 + λ1ϕ0 −Bϕ0

)
+

(
Bϕ0, ϕ2

)
+

(
λ0ϕ1 + λ1ϕ0 −Bϕ0, ϕ2

)
(2.20)

= λ0

((
ϕ3, ϕ0

)
+

(
ϕ0, ϕ3

)
+

(
ϕ1, ϕ2

)
+

(
ϕ2, ϕ1

))
+

(
Bϕ1, ϕ1

)
+ λ1

((
ϕ2, ϕ0

)
+

(
ϕ0, ϕ2

))
by (2.10) and (2.11)

======
(
(B − λ1)ϕ1, ϕ1

)
,

λ4 =
(
Bϕ3, ϕ0

)
+ λ0

((
ϕ4, ϕ0

)
+

(
ϕ0, ϕ4

))
+

(
Bϕ2, ϕ1

)
+

(
ϕ3, λ0ϕ1 + λ1ϕ0 −Bϕ0

)
+
(
Bϕ1, ϕ2

)
+

(
λ0ϕ2 + λ2ϕ0 + λ1ϕ1 −Bϕ1, ϕ2

)
+

(
Bϕ0, ϕ3

)
+

(
λ0ϕ1 + λ1ϕ0 −Bϕ0, ϕ3

)
= λ0

((
ϕ4, ϕ0

)
+

(
ϕ3, ϕ1

)
+

(
ϕ2, ϕ2

)
+

(
ϕ1, ϕ3

)
+

(
ϕ0, ϕ4

))
+

(
Bϕ2, ϕ1

)
+ λ2

(
ϕ0, ϕ2

)

+λ1

((
ϕ3, ϕ0

)
+

(
ϕ1, ϕ2

)
+

(
ϕ0, ϕ3

)) by (2.12) and (2.13)
======

(
(B − λ1)ϕ2, ϕ1

)
+ λ2

(
ϕ0, ϕ2

)
.

(2.21)

Transferring now the (self-adjoint) operator B − λ to the second factor in the formulas for λk,
we obtain the assertion of the lemma.

2.1. Expansion of the Function L with Respect to the Variable p Up to O(|p|5)

Let us now apply the above formulas to our problem. Consider the equation for the torus T and
the following “problem for a cell,”

�Θ
y f = F, 〈F 〉T = 0, (2.22)

where F (y, x, p) is a smooth function 2π-periodic with respect to the variables yj and has zero mean.
We have already noted above that the minimal nondegenerate eigenvalue of the operator �Θ

y is
equal to zero, and one can and may conveniently choose the corresponding normalized eigenfunction
χ0 to be identically equal to one2. The condition that F and χ0(x, p, y) = 1 are orthogonal means
that the mean value 〈F 〉T vanishes. For the sake of completeness of our presentation, we state and
prove the following lemma, which is a special case of Lemma 2 in [1].

Lemma 2. For any x ∈ K and any sufficiently small p, there exists a unique solution f ∈
C∞(T) of the equation

(H− L)f = F (2.23)

with zero mean 〈f〉T (the condition that f is orthogonal to the function χ0(x, p, y)).

2One can also set χ0 = eiq(x,p), q(x, p) ∈ R; however, this is inconvenient for many reasons.
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If F is a smooth function of the variables x ∈ K, y ∈ T, and p (for small p) and some additional
parameters z, then the solution f(x, p, y, z) is also a smooth function. Any other smooth solution
f1(x, p, y, z) of equation (2.23) on the torus T can be expressed using f from the formula f1 = f+g,
where g(x, p, z) is a smooth function of the parameters (x, p, z).

Proof. It follows from the general theory of elliptic equations on compact manifolds that H0−L
defines a Fredholm operator from the Sobolev space H2(T) to L2(T). Therefore, the solvability
condition for equation (2.23) is that the right-hand side must be orthogonal to the solution χ0 of
the homogeneous equation, and the solution f orthogonal to χ0 is uniquely defined.

One can readily prove, using the general theory of elliptic operators on compact manifolds (see,
e.g., [7]) that the functions entering these solutions are infinitely differentiable. To this end, consider
the following problem: for chosen (x, p), a given function F (y), and a number d, on must find a
function u(y) and a number g satisfying the equations

(H− L)u(y) − gχ0(x, p, y) = F (y), (u(y), χ0)L2(T) = d. (2.24)

Since the operator A(x, p) corresponding to this problem, i.e., A(x, p) : Hs+2(T)×C1 → Hs(T)×C1,
where C1 stands for the one-dimensional complex space, is invertible and A(x, p) depends smoothly
on the parameters (x, p), it follows that the inverse operator A−1(x, p) also depends smoothly on
the parameters (x, p). Taking the function F (x, p, y, z) for F , we see that the solution u(x, p, y, d, z)
of problem (2.24) depends smoothly on the parameters (x, p, z). However, f(x, p, y, z) is just the
solution of problem (2.24) for d = 0 and g = 0, and hence f(x, p, y, z) is a smooth function of the
parameters (x, p, z) with values in the space Hs+2(T) for any s. Using standard embedding theorems
for Sobolev spaces, we now see that f(x, p, y, z) is a jointly infinitely differentiable function of its
variables.

Denote the solution defined in the lemma by

f(y, x, p) =
1

�Θ
y

F (y, x, p) (2.25)

In addition to the operator D = 〈p,Θ(x)∇y〉 linearly depending on p, we also introduce the operator

Q = DC2 − C2D, (2.26)

which also linearly depends on p. Denote by g0(y, x), g1(y, x, p), g2(y, x, p) solutions with zero
means for the problem on a cell,

g0 =
1

�Θ
y

ã, g1 =
1

�Θ
y

(Dã), g2 =
1

�Θ
y

(Qg1 − 〈Qg1〉T), 〈g1,2,3〉T = 0. (2.27)

Note that g1(y, x, p) is a linear homogeneous function of p and g2(y, x, p) is a second-order
homogeneous polynomial in p.

Proposition 1 (the formulas below were announced in [1]). For x belonging to a compact set K
and for sufficiently small p, the minimal eigenvalue L(x, p) of the operator H is nondegenerate and
analytic with respect to p, and the normalized function χ(x, p, y) can also be chosen to be analytic

in p, in such a way that the equation L(x, p) = L(2)(x, p) + L(4)(x, p) +O(|p|6) holds, where

L(2)(x, p) = p2C0
2 − 〈Qg1〉T = p2C0

2 + 〈g1Dã〉T, (2.28)

L(4)(x, p) = p4〈g0ã〉T + 2p2〈g1Qg0〉T + 〈g12〉T〈Qg1〉T + p2〈g12ã〉T + 〈g2Qg1〉T, (2.29)

and the following relations hold for χ(x, p, y):

χ = 1 − ig1(y, x, p) + p2g0(y, x) − g2(y, x, p) − 1

2
〈g21〉T +O(|p|3), (2.30)

‖1 − ig1(y, x, p) + p2g0(y, x) − g2(y, x, p) − 1

2
〈g21〉T‖ = 1 +O(|p|3). (2.31)
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Proof. Let us apply formulas (2.4) to our problem. Write

A = −�Θ
y , εB = −i(DC2(y, x) + C2(y, x)D) + C2(y, x)p2,

Here ϕ = χ and λ = L, and we obtain in fact an expansion in powers of |p|, which we represent in
the form

χ = χ0 + χ1 + χ2 + . . . , L = L0 + �L1 + L2 + . . . ,

assuming that χk and Lk are of the order of O(|p|k). For the inner product (·, ·) we take the inner
product on the torus T and use the notation (4.21) for the mean value on the torus T.

For ϕ0 = χ0 and λ0 = L0 we choose

ϕ0 = 1, λ0 = L0 = 0.

This immediately gives
ελ1 = p2〈C2〉T ≡ p2C2

0 , (2.32)

i.e., ελ1 is found with an improved accuracy.
Further, by the definition of the operator D and by the equation for the function χ1, we have

ε(B − λ1)ϕ0 = −iD(C2(y, x)) + p2ã(y, x) = (−iD + p2)ã(y, x),

εϕ1 =
1

�Θ
y

(
(−iD + p2)ã

)
= −ig1(y, x, p) + p2g0(y, x).

For subsequent calculations, it is useful to recall that the numbers ελk, g, and Q are real. The
second formula in (2.4) gives

ε2λ2 = ε2(ϕ1, (B − λ1)ϕ0) = p4(g0, ã) + (g1,Dã) = 〈g1Dã〉T + p4〈g0ã〉T.

Let us now evaluate the quantity ε3λ3 = ε3
(
ϕ1, (B−λ1)ϕ1

)
up to accuracy O(|p|6). Substitute the

expressions obtained above into this formula and take into account that ελ3, g0, and Q are real
and that the adjoint operator is Q∗ = −Q. This gives

ε3λ3 = p2(g1, Qg0) − p2(g0, Qg1) + p2(g1, C̃
2g1) + p6(g0, ã(y, x)g0)

= 2p2(g1, Qg0) + p2(g1, ãg1) +O(|p|6) = 2p2〈g1, Qg0〉T + p2〈g21 ã〉T.
(2.33)

Finally let us evaluate the quantity ε4λ4 = ε4
(
ϕ2, (B − λ1)ϕ1

)
+ ε4λ2

(
ϕ0, ϕ2

)
. We have ε2ϕ2 =

− 1
�Θ

y
(ε2λ2 − ε2(B − λ1)ϕ1) + R. Here R stands for the constant (with respect to the variables y)

which is defined by condition (2.11). With regard to the definition of the operator 1
�Θ

y
, we obtain

R = −ε
2

2
(ϕ1, ϕ1) = −1

2
((g1, g1) + p4(g0, g0)),

ε2ϕ2 = − 1

�Θ
y

(
〈g1DC̃2〉T + p4

〈
g0ã〉T +Qg1 − p4ãg0 + ip2Qg0 + ip2g1ã

)

−1

2
((g1, g1) + p4(g0, g0)) = − 1

�Θ
y

(
Qg1 + 〈g1Dã〉T

)
− 1

2
〈g21〉T +O(|p|3),

ε2(ϕ0, ϕ2) = R = −1

2
〈g21〉T +O(|p|4).

(2.34)
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We can similarly find ε2(B − λ1)ϕ1 = −Qg1 +O(|p|3) and

ε4λ4 =
( 1

�Θ
y

(Qg1 + 〈g1Dã〉T) +
1

2
〈g21〉T, Qg1

)
−1

2
〈g21〉T〈g1Dã〉T +O(|p|6).

Note that 〈Qg1〉T = −〈g1Dã〉T, and therefore we have

ε4λ4 =
( 1

�Θ
y

(Qg1 + 〈g1DC̃2〉T), Qg1

)
−〈g21〉T〈g1Dã〉T +O(|p|6)

= 〈g2Qg1〉T + 〈g21〉T〈Qg1〉T +O(|p|6).

(2.35)

Adding now εkλk, k = 0, . . . , 4, and εkϕk, k = 0, . . . , 4, we obtain (2.28) and (2.29).

One can prove that, in fact, the expansion of L0 is in homogeneous polynomials in pk of even
degrees.

3. FORMULAS FOR L(2) AND L(4) IN THE SINGLE-PHASE CASE

Let us begin with the case n = 1. Then the formulas of Proposition 1 can be realized as
quadratures. We have

�Θ
y = Θ2

x

∂

∂y
C2(y, x)

∂

∂y
, D = 〈p,Θx)

∂

∂y
, Q = 〈p,Θx)(

∂

∂y
C2 + C2 ∂

∂y
).

Let f(y, x) be a function 2π-periodic with respect to y with zero mean. Denote by Î the operator
of integration with respect to the variable y, which gives functions with zero mean, namely.

Îf(y, x) =

∫ y

0

f(y, x) dy − 1

2π

∫ 2π

0

(∫ y

0

f(η, x) dη

)
dη.

It is clear that ∂
∂y
Îf = Î ∂

∂y
f for any function f with zero mean. We have further

(�Θ
y )−1f =

1

Θ2
x

Î

(
Îf + βf (x)

C2(y, x)

)
, βf (x) = −

∫ 2π

0

Îf dy

C2(y, x)

/∫ 2π

0

dy

C2(y, x)
. (3.1)

Indeed, F = (�Θ
y )−1f is a solution of the equation �Θ

y F = f with zero mean, and hence the
relations

C2 ∂

∂y
F =

1

Θ2
x

(Îf + β(x)),
∂

∂y
F =

1

Θ2
x

Îf + β(x)

C2(y, x)
(3.2)

hold for some function β(x). Taking the mean of both the sides of the last equation, we obtain

〈 Îf
C2

〉
T

+ β(x)
〈 1

C2

〉
T

= 0, β(x) = −
〈 Îf
C2

〉
T

/〈 1

C2

〉
T

= 0. (3.3)

Applying the operator Î to the latter relation in (3.2), we obtain (3.1) with regard to the second
relation in (3.3).

Let us proceed with the calculation of the functions gk in (2.27). Applying formula (3.1) to the
function f = ã, we see that

g0 =
1

Θ2
x

Î

(
Î ã+ β0(x)

C2(y, x)

)
, β0(x) = −

∫ 2π

0

Î ã dy

C2(y, x)

/∫ 2π

0

dy

C2(y, x)
. (3.4)
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To obtain an expression for g1, we apply formula (3.1) to the function f = 〈p,∇Θ
y 〉 ∂

∂y ã. Since

Î ∂
∂y ã = ã, it follows that

g1 =
〈p,Θx〉

Θ2
x

Î
(

1 +
γ1
C2

)
, γ1 = −2π

/∫ 2π

0

dy

C2(y, x)
. (3.5)

To obtain an expression for g2, we apply formula (3.1) to the function f = Qg1 − 〈Qg1〉T. Since

Qg1 − 〈Qg1〉T = 〈p,Θx〉( ∂
∂y
C2 + C2 ∂

∂y
)g1 − 〈p,Θx〉〈C2 ∂

∂y
g1〉T = 〈p,Θx〉 ∂

∂y
(C2g1)

+
〈p,Θx〉2

Θ2
x

(C2 + γ1) − 〈p,Θx〉2
Θ2

x

(〈C2〉T + γ1) = 〈p,Θx〉 ∂
∂y

(C2g1) +
〈p,Θx〉2

Θ2
x

Ĉ2, (3.6)

it follows that

g2 = (�Θ
y )−1(Qg1 − 〈Qg1〉T) =

〈p,Θx〉
Θ2

x

Îg1 +
〈p,Θx〉2

Θ2
x

g0

=
〈p,Θx〉2

Θ4
x

[
Î
(
Î
(

1 +
γ1
C2

))
+ Î

( Î ã+ β0(x)

C2(y, x)

)]
, (3.7)

where γ1 is expressed by the second formula in (3.5). Now to express L(2)(x, p) and L(4)(x, p) in
quadratures, it suffices to substitute the expressions for gk obtained in (3.4), (3.5), and (3.7) into
formulas (2.28) and (2.29). Here formula (2.28) becomes

L(2)(x, p) = p2〈C2〉T − 〈Qg1〉T = p2〈C2〉T − 〈p,Θx〉〈C2 ∂

∂y
g1〉T

= p2〈C2〉T − 〈p,Θx〉2
Θ2

x

(〈C2〉T + γ1) = p2〈C2〉T +
〈p,Θx〉2

Θ2
x

(〈C−2〉T)−1 − 〈C2〉T). (3.8)

We do not present the corresponding formula for L(4)(x, p) here, because it is too cumbersome.

Consider an example for which C2 = C2
0 (x) + α(x) cos y and |α(x)| < C2

0 (x). In this case, the
means in the last equation can be evaluated explicitly, and we obtain

L(2)(x, p) = |p|2C2
0 (x) − 〈p,Θx〉2

Θ2
x

(C2
0 (x) −

√
C4

0 (x) − α2(x)). (3.9)

4. PERTURBATION THEORY WITH RESPECT TO THE
SMALL OSCILLATING PART OF THE FUNCTION C2

Let δ > 0 be some number (which is assumed below to be sufficiently small). Suppose that

ã = δa(y, x)

in (1.6), i.e., C2(y, x) = C2
0 (x) + δa(y, x), where a(y, x) is a smooth real function 2π-periodic with

respect to the variables yj and has zero mean, and C2
0 (x) > 0 for any x belonging to the compact

set K. Then C2(y, x) > 0 for |δ| � ρ for some ρ > 0, and it follows from Lemma 3 and from
Lemmas 2 and 3 in [1] that the problem on a cell (2.22) has a smooth solution f(y, x, p) with zero
mean on the torus T for any chosen x and δ and for any smooth function F (y, x, p) on the torus
T with zero mean, and the operator (�Θ

y )−1 is well defined with acts from the space of functions

with zero mean values on the torus T and is inverse in this space to the operator �Θ
y , and thus

f = (�Θ
y )−1F . Since the operator �Θ

y now depends not only on the parameters x but also on
the parameter δ, it follows that, for the case in which F depends on (y, x, p, δ), the function f
depends also on (y, x, p, δ). Assume that the function F (y, x, p, δ) smoothly depends (y, x, p, δ) and
is analytic in δ for y ∈ T, x ∈ K, and |δ| � ρ. Here we keep in mind that the function F (y, x, p, δ)
can be analytically continued to some neighborhood V of the interval [−ρ, ρ] of the real axis on
the complex plane of the variable δ and smoothly depends on (y, x, p, δ) for y ∈ T, x ∈ K, |p| < p0,
and δ ∈ V .
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Lemma 3. If F (y, x, p, δ) is a smooth function of (y, x, p, δ) for y ∈ T, x ∈ K, |p| < p0, and
|δ| � ρ and analytic in δ, then the solution f(y, x, p, δ) of the problem on a cell (2.22) is a smooth
function of (y, x, p, δ) for y ∈ T, x ∈ K, |p| < p0, and |δ| � ρ and analytic in δ.

The proof of this assertion is now carried out similarly to the proof of Lemma 3 here and of
Lemma 2 in [1]. To indicate the dependence of the operator �Θ

y on x and δ, we write A(x, δ) = �Θ
y .

With regard to the parameter δ, we have

A(x, δ) = A0 + δB,A0 (x, ∂/∂y) = C2
0 (x)〈∇Θ

y ,∇Θ
y 〉, B(y, x, ∂/∂y) = 〈∇Θ

y , a(y, x)∇Θ
y 〉, (4.1)

1. Let us show first that the function f(y, x, p, δ) can be regarded as a smooth function of the
parameters (x, p, δ) for x ∈ K, |p| < p0, and |δ| � ρ with values in the Sobolev space H2(T) of
function which belong to L2(T) together with the generalized derivatives distribution of the first
and second order. Indeed, if A is regarded for chosen x and δ as a continuous operator from the

space H̃2(T) consisting of functions in H2(T) to the space L̃2(T), which is the subspace of L2(T)
consisting of the functions with zero means, then A is invertible, because it follows from the general
theory of elliptic operators on compact manifolds (see, e.g., [7]) that A is a Fredholm operator from
H2(T) to L2(T), and the condition that the mean value of a function vanishes is the very solvability
condition for equation (2.22). Since the operator A smoothly depends on the parameters (x, δ), it
follows that the inverse operator A−1 has the same property, which can readily be established by
using the well-known formula for the inverse operator,

A−1(x, δ) = A−1(x0, δ0)

∞∑
j=0

((A(x0, δ0) −A−1(x, δ))A−1(x0, δ0))j , (4.2)

where x0 ∈ K and |δ0| � ρ, where this series converges uniformly with respect to the operator
norm for all (x, δ) in a sufficiently small neighborhood of the point (x0, δ0) and admits termwise
differentiation with respect to the parameters (x, δ). This implies that f(y, x, p, δ) = A−1F is a

smooth function of the parameters (x, p, δ) for x ∈ K, |p| < p0, |δ| � ρ with the values in H̃2(T).

2. Let x0 ∈ K, and let δ0 be real with |δ0| � ρ. If x, p are in a sufficiently small neighborhood of
the point x0 ∈ K, then the series (4.2) converges also for complex values δ with |δ − δ0| < ρ1 for
some ρ1 > 0, and hence there is a neighborhood of the segment [−ρ, ρ] of the real axis such that the

operator A : H̃2(T) → L̃2(T) is invertible. By the standard smoothness theorems for solutions of
elliptic equations, this implies the invertibility of A for these (x, δ) if A is regarded as an operator

A : H̃s+2(T) → H̃s(T) for any s � 0 (the tilde means here that the corresponding subspaces of
functions with zero mean values are considered). In this case, for any s � 0 and for x0 ∈ K and
δ0 ∈ U , the series converges uniformly with respect to the operator norm in some sufficiently small
neighborhood of the point (x0, δ0) and admits the termwise differentiation with respect to the
parameters (x, p, δ), which implies that f(y, x, p, δ) = A−1F is a smooth function of the parameters

(x, p, δ) for x ∈ K, |p| < p0, δ ∈ U ∩ V which is analytic in δ and takes the values in H̃s+2(T).

3. It follows now from the standard embedding theorems for Sobolev spaces that f(y, x, p, δ) is
a smooth function of (y, x, p, δ) for y ∈ T, x ∈ K, δ ∈ U ∩ V which is analytic in δ. This completes
the proof of the lemma.

The lemma implies that g0, g1, and g2 (introduced in (2.27)) are smooth functions of (y, x, p, δ)
for y ∈ T, x ∈ K, |δ| � ρ which are analytic in δ. To find approximations for these functions, we
can apply perturbation theory, namely, expand gk in series in powers of the parameter δ,

gk = δgk,1(y, x, p) + δ2gk,2(y, x, p) + . . . (4.3)

and seek the coefficients gk,j of these expansions using the corresponding recurrence relations.
Recall that both gk and the coefficients gk,j are 2π-periodic functions, with respect to the variables
yj , with zero mean value which are homogeneous polynomials of degree k with respect to the
variables p. Note that the expansions (4.3) admit termwise differentiation with respect to the
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variables (y, x, p). Below we do no use the fact that gk is analytic in δ, and (4.3) can be regarded
as asymptotic expansions.

Representing the equation for g0 in the form A0(x, ∂/∂y)g0 + δB(y, x, ∂/∂y)g0 = δa(y, x), we
see that g0,j can be found from the recurrence relations A0g0,1 = a, A0g0,j+1 +Bg0,j = 0 for j � 1.
Solving these equations, we formally obtain

g0,1 = A−1
0 a, g0,2 = −A−1

0 BA−1
0 a, g0,3 = A−1

0 BA−1
0 BA−1

0 a, . . . , (4.4)

where (we would like to recall) the symbol A−1
0 F with F having zero mean value stands for

the solution of the equation A0f = F with zero mean value of f (all functions are 2π-periodic
with respect to yj). Thus, g0 = δg0,1 + O(δ2) = δA−1

0 a + O(δ2). Similarly, using the equation
A0(x, ∂/∂y)g1 + δB(y, x, ∂/∂y)g1 = δDa(y, x), we see that

g1,1 = A−1
0 Da, g1,2 = −A−1

0 BA−1
0 Da, g1,2 = A−1

0 BA−1
0 BA−1

0 Da, . . . , (4.5)

and g1 = δDA−1
0 a+O(δ2). Here we use the fact that the operators A0 and D commute, because they

are differential operators with respect to the variables y whose coefficients are constant with respect
to y, and hence, the operators A−1

0 and D also commute. Since g1 is a second-order homogeneous
polynomial in p, it follows that here O(δ2) denotes a linear homogeneous function of p whose
coefficients are of the form O(δ2). The equation

A0(x, ∂/∂y)g2 + δB(y, x, ∂/∂y)g2 = Qg1 − 〈Qg1〉T = 2δC2
0Dg1,1 +O(δ2) = 2δC2

0D
2A−1

0 b+O(δ2),

where O(δ2) stands for a second-order homogeneous polynomial in p with coefficients of the form
O(δ2), now implies that g2,1 = 2C2

0 (x)D2(A−1
0 )2a, and thus g2 = 2δC2

0 (x)D2(A−1
0 )2a+O(δ2).

We also note the relations

Qg0 = 2δC2
0 (x)Dg0,1 +O(δ2) = 2δC2

0 (x)DA−1
0 a+O(δ2), (4.6)

Qg1 = 2δC2
0Dg1,1 + δ2(Da+ aD)g1,1 + 2δ2C2

0Dg1,2 +O(δ3), (4.7)

〈Qg1〉T = δ2〈aDg1,1〉T +O(δ3) = δ2〈aD2A−1
0 a〉T +O(δ3), (4.8)

which are used below.
The solution with zero mean, f = A−1

0 F , of the equation A0f = F for a function F (y, x) with
zero mean can be obtained by expanding F in the Fourier series

F =
∑
ν �=0

Fν(x) exp
(
i〈ν, y〉), (4.9)

where ν stands for the integer multi-index ν = (ν1, . . . , νn) with integer components νj � 0. The
solution is of the form

f = A−1
0 f = −C−2

0 (x)
∑
ν �=0

〈Θxν,Θxν〉−1Fν exp
(
i〈ν, y〉), (4.10)

If F is a finite sum of the form (4.9), then f is also a finite sum of the form (4.10). The action of
the operator B is the multiplication by a finite sum. This implies that, if a is a finite sum of the
form (4.9), then all coefficients gk,l can be found in the form of finite sums of this kind. Therefore,
the evaluation of the coefficients gk,l reduces in these cases to purely algebraic operations with the
Fourier coefficients for a and the entries of the matrix Θx.

We can now obtain approximate values for L(2) and L(4) in formulas (2.28) and (2.29). Note
also that the operator A−1

0 is symmetric, i.e., the relation 〈f1A−1
0 f2〉T = 〈f2A−1

0 f1〉T holds for any
functions f1 and f2 that are 2π-periodic with respect to yj and have zero mean values. Indeed,
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〈f1A−1
0 f2〉T = 〈(A0A

−1
0 f1)A−1

0 f2〉T = 〈(A−1
0 f1)A0A

−1
0 f2〉T = 〈(A−1

0 f1)f2〉T, and hence both the
operator A−1

0 and the operator D2 can be transferred in the summands of formula (4.13) from one
factor to another (the operator D can be transferred together with the alternation of the sign).
Using these properties and replacing the second summand in L(2) by the right-hand side of (4.8),
we obtain

L(2)(x, p) = p2C2
0 (x) − δ2〈aD2A−1

0 a〉T (4.11)

−δ3〈(A−1
0 Da)(BA−1

0 Da)〉T + δ4〈(BA−1
0 Da)(A−1

0 BA−1
0 Da)〉T +O(δ5), (4.12)

where O(δ5) is a second-order homogeneous polynomial in p with the coefficients of the form O(δ5).

In the same way, replacing g0, Qg0, g1, Qg1, and g2 in formula (2.29) for L
(4)
0 by δg0,1, 2δC2

0Dg0,1,
δg1,1, 2δC2

0Dg1,1, and δg2,1, respectively, using (4.6) and (4.7), we obtain

L(4) = δ2(p4〈g0,1b〉T + 4p2〈g1,1C2
0Dg0,1〉T + 2〈g2,1C2

0Dg1,1〉T) +O(δ3)

with an accuracy of O(δ3), where O(δ3) stands for a fourth-order homogeneous polynomial in p
with coefficients of the form O(δ3). Substituting the expressions found above, namely, g0,1 = A−1

0 a,

g1,1 = DA−1
0 b, and g2,1 = 2C2

0 (x)D2(A−1
0 )2b, we finally obtain

L(4) = δ2(p4〈bA−1
0 b〉T + 4p2C2

0 〈(DA−1
0 b)2〉T + 4C4

0 〈(D2(A−1
0 )2b)D2A−1

0 b〉T) +O(δ3), (4.13)

where O(δ3) stands for a fourth-order homogeneous polynomial in p with the coefficients of the
form O(δ3). Thus, formulas (4.11) and (4.13) enable one to calculate the polynomials L(2)(x, p) and
L(4)(x, p) (in the variables p) approximately, with an accuracy up to O(δ3).

One can represent formula (4.13) in a more compact form using the symmetry of A−1
0 and D2

and the antisymmetry of D. As was already noted above, the operators D and A−1
0 commute, and

thus products of these operators can be written out in an arbitrary order of the factors. Transferring
all operators in the summands of formula (4.13) to one of the factors, we can represent the formula
as follows:

L(4)(x, p) = δ2〈aA−1
0 (p2 − C2

0D
2A−1

0 )2a〉T +O(δ3). (4.14)

Restricting ourselves to the summands ∼ δ2, we can expressL(2)(x, p) and L(4)(x, p) in terms of
the Fourier coefficients of the function a in a rather simple form.

Proposition 4. Let

a(y, x) =
∑
ν �=0

aν(x) exp
(
i〈ν, y〉). (4.15)

Then

L(2)(x, p) = p2C2
0 − δ2

C2
0

∑
ν �=0

〈p,Θxν〉2
〈Θxν,Θxν〉 |aν |

2 +O(δ3), (4.16)

L(4)(x, p) = − δ2

C2
0

∑
ν �=0

1

〈Θxν,Θxν〉
(
p2 − 2

〈p,Θxν〉2
〈Θxν,Θxν〉

)2

|aν |2 +O(δ3). (4.17)

Proof. Let us prove formula (4.17). Using formula (4.10), we see that

A−1
0 (p2 − C2

0D
2A−1

0 )2a = −
∑
ν �=0

aν
C2

0 〈Θxν,Θxν〉
(
p2 − 2

〈p,Θxν〉2
〈Θxν,Θxν〉

)2

exp
(
i〈ν, y〉).

Since the mean of exp
(
i〈ν, y〉) is equal to 0 for ν �= 0 and 1 otherwise, we obtain the desired

formula.
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If b is a finite sum of the form (4.15), then formulas (4.16) and (4.17) also have finitely many
summands, and therefore the evaluation of the right-hand sides of these formulas reduces in these
cases to finitely many purely algebraic operations with the Fourier coefficients of b and the entries
of the matrix Θx.

Formulas (4.16) and (4.17) can be simplified in the single-phase case. Assuming that Θx is a
vector, y is a one-dimensional variable, and ν is a one-dimensional index, one can readily show
that, in this case,

L(2)(x, p) = p2C2
0 − δ2

〈p,Θx〉2
Θ2

xC
2
0

〈a2〉T +O(δ3) ≡ p2C2
0 − δ2

〈p,Θx〉2
Θ2

xC
2
0

∑
ν �=0

|aν |2 +O(δ3). (4.18)

L(4)(x, p)=− δ2

Θ2
xC

2
0

(
p2−2

〈p,Θx〉2
Θ2

x

)2

〈(Îa)2〉T+O(δ3)≡− δ2

Θ2
xC

2
0

(
p2−2

〈p,Θx〉2
Θ2

x

)2∑
ν �=0

|aν |2
ν2

+O(δ3).

(4.19)

Remark 1. Represent the formulas in Proposition 2 as follows. Treat the symbol limμ→+0 w as
the weak limit of the function w with rapid oscillations. Then C2

0 = limμ→+0 C
2 and

q(x, μ) = C2 − C2
0 ≡ ã(

Θ(x)

μ
, x). (4.20)

Then formulas (4.16) and (4.17) can formally be represented in the form

L(2)(x, p) = p2C2
0 − 1

C2
0

lim
μ→+0

(q · 〈p,∇x〉2
�x

q) +O(q3), (4.21)

L(4)(x, p) =
1

C2
0

lim
μ→+0

( 1

μ2�x

(
p2 − 2

〈p,∇x〉2
�x

)
q ·

(
p2 − 2

〈p,∇x〉2
�x

)
q
)

+O(q3). (4.22)

One can try to use these formulas in practical problems of physics and mechanics. They appeal
only to the speed C2 and do not use the function ã, the phase Θ, and so on, which are in fact
not known, in contrast to C2. The problem is to define the Laplace operator �x correctly and to
adequately calculate the weak limit (i.e., to make a correct actual averaging).
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