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Abstract. We describe the main lines of mathematical research dealing with nodal
sets of eigenfunctions since the days of Chladni. We present the material in a form
hopefully suited to a nonspecialized but mathematically educated audience.

1 Introduction

When Ernst Florens Friedrich Chladni published the discovery of his famous Klangfiguren in
1787, he aroused a lot of interest not only among his fellow physicists - or Naturforscher as
they addressed themselves in those days - but also among the public at large. Notably with
the work of Euler and Lagrange, Mathematical Physics had just come into being and the
new phenomenon posed a great challenge to its protagonists. Nevertheless, it took more than
70 years until a satisfying model was formulated by Kirchhoff in spite of many previous at-
tempts e.g. by Sophie Germain and Poisson. A reliable test for its predictions had to wait even
until 1953.
The analysis of the Klangfiguren then requires us to find the characteristic vibrations of a

plate and to determine their nodes i.e. the rest points of the plate. This amounts to solving an
eigenvalue problem for the Bilaplacian and to find the zero sets of the eigenfunctions. This is
a quite complicated problem which allows an explicit solution only for the circular plate ([8],
p. 263). Therefore, mathematical physicists have preferred to study the conceptually analogous
but technically simpler problem of the vibrating membrane on which we will focus in this
review; we concentrate on results obtained by “classical” methods of Mathematical Physics,
hence will exclude stochastic approaches from consideration which are well presented in other
articles of this collection.

2 Vibrating membranes

A compact Riemannian manifold (M, g), of dimension m, possibly with boundary, ∂M , will be
called a membrane in what follows; if ∂M = ∅, the membrane is called closed. We will require
infinitely smooth data for simplicity, even though this assumption can be weakened considerably
in many cases.
The vibrations we consider are described by the eigenfunctions of the Laplace-Beltrami

operator which we introduce as an operator in L2(M, g) which is defined for σ ∈ C∞c (M) by

∆σ = − 1√
g

m∑
i,j=1

∂

∂xi

(√
ggij

∂

∂xj
σ

)
; (1)

here (xi) are local coordinates, (gij) denote the corresponding coefficients of the induced metric
on T ∗M , and g = det(gij)−1. In order to obtain a symmetric operator (note that ∆ becomes
a e-mail: bruening@mathematik.hu-berlin.de



182 The European Physical Journal Special Topics

nonnegative in our definition) we have to impose boundary conditions if ∂M �= ∅; again, for
simplicity (and frequency of occurence) we restrict attention to the Dirichlet and the Neumann
boundary conditions which require σ or its normal derivative at the boundary to vanish. The
domain of ∆ will be generically denoted by D.
The basis of the subsequent analysis is the following special instance of the Spectral Theo-

rem, which was first conjectured by M. Ohm and Lord Rayleigh and eventually proved, in great
generality, by Hilbert 1904.

Theorem 1 There is a sequence (λn, σn), called the spectral resolution of ∆, of solutions of
the eigenvalue equation

∆σ = λσ, σ ∈ D, (2)

with the following properties.
(1) The sequence (λn)n∈N increases towards infinity.
(2) The sequence (σn)n∈N forms an orthonormal basis for L2(M, g).
In particular, ∆ is a self-adjoint operator with domain D in L2(M, g).
We call the finite dimensional vector space

E(λn) := {σ ∈ D : ∆σ = λnσ}
the eigenspace with eigenvalue λn; λn is called simple if its multiplicity

µ(λn) := dimE(λn)

is equal to one, and otherwise degenerate.
Now we can introduce the nodes or the nodal set of σn as

N(σn) := (σn)
−1(0); (3)

if m = 2, we talk about the nodal lines. There is no ambiguity about nodes if λn is simple
but in the degenerate case, the nodal sets may vary greatly in the unit sphere of E(λn). Since
in this case we have many choices for an orthonormal basis, it is unclear how significant the
knowledge of N(σn) for any specific choice of basis can be.
The proof of Theorem 1 rests on the calculus of variations as applied to the Dirichlet

integral. In particular, one obtains the following very useful non-recursive characterization of
the eigenvalues, which is due to Courant ([8, p. 351]).

Theorem 2 Denote by Vk the set of k-dimensional subspaces of L2(M, g). Then for all n,

λn = max
V ∈Vn−1

min
σ∈D\{0}∩V ⊥

∫
M
|∇σ|2∫
M
|σ|2 . (4)

One of the advantages in dealing with mebranes is the existence of large families for which the
spectral resolution can be given explicitly. Even though these classes are special in the sense that
they consist of manifolds with integrable geodesic flow, they do provide interesting examples
to build an intuition and to test conjectures. We restrict to the case of closed membranes and
briefly discuss the case m = 1, the spheres, and the flat tori below.

Example 1: m = 1. 1 In dimension one, the isometry classes of closed membranes form a
one-parameter family given by the circles of fixed radius R. For R = 1, we need to find the
2π-periodic solutions of the equation

σ′′(t) + λσ(t) = 0,

and get, for all n ∈ N ,

λn = (n− 1)2, E(λn) = {α cos(
√
λnt) + β sin(

√
λnt) : α, β ∈ C}.
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The nodal set N(σn) is given by n − 1 equidistant points on S1, and the set S1 \ N(σn) has
exactly n connected components. In what follows, we will call the connected components of
M \ N(σn) the nodal domains of σn, and we define the number NC(σn), the nodal count of
σn, as the number of nodal domains of σn.

Example 2: Spheres

We equip the sphere
Sm := {x ∈ Rm+1 : |x| = 1} ⊂ Rm+1

with the metric induced from the Euclidean metric on Rm+1. Next we introduce the space of
homogeneous polynomials in m+ 1 variables, Pk = Pk(Rm+1), and the subspace of harmonic
polynomials,

Hk = Hk(Rm+1) := {σ ∈ Pk : ∆σ = 0}.
The link with ∆Sm , the Laplace-Beltrami operator on S

m, is provided by orthogonal symmetry
since in polar coordinates, x = rω, we obtain for σ ∈ Pk

∆Rm+1σ(rω) = r
k−2(∆Sm − k(k +m− 1))σ(ω). (5)

As an easy consequence we find that

Hk|Sm ⊂ ESm(k(k +m− 1)),
and that the image of the map r2∆Rm+1 : Pk+2 → Pk+2 contains the spaces

⊕lj=0r2(l+1−j)H2j

and
⊕l−1j=0r2(l−j)H2j+1,

for k = 2l and k = 2l − 1, respectively. But then it follows inductively that
P2l = ⊕lj=0r2(l−j)H2j , (6)

P2l+1 = ⊕lj=0r2(l−j)H2j+1. (7)

The direct sum in this decomposition is actually orthogonal if we equip Pk with the scalar
product

〈σ1, σ2〉 :=
∫
Sm
σ1(ω)σ̄2(ω)dvolSm(ω).

In summary, we find that the spectral resolution of ∆Sm is provided by the data

λn = n(n+m− 1), E(λn) = Hn|Sm.
Moreover,

µ(λn) =

(
n+m
m

)
−
(
n− 2 +m
m

)
=
2

m!
nm−1 +O(nm−2) =

2

m!

√
λn
m−1

+O(
√
λn
m−2
).

We also see that the eigenfunctions of ∆Sm with eigenvalue λn are polynomials of degree
n ∼ √λn. Their nodal sets, however, are not at all easy to analyze.
Example 3: Flat Tori
A flat torus, T = TΓ , is the quotient of R

m by a lattice Γ , where a lattice is the set of all integer
linear combinations of a fixed basis, (γj)

m
j=1, of R

m. The torus is then metrically obtained from
the Euclidean parallelepiped

FΓ :=


m∑
j=1

xjγj ∈ Rm : 0 ≤ xj ≤ 1

 ,
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by appropriately identifying the faces; in particular, volFΓ = volT .
We introduce the dual lattice, Γ ∗, by

Γ ∗ := {γ∗ ∈ Rm : 〈γ∗, γ〉 ∈ Z for all γ ∈ Γ} =


m∑
j=1

kjγ
j : kj ∈ Z


 ,

where (γj)mj=1 denotes the dual basis to (γi)
m
i=1, 〈γj , γi〉 = δji . The functions

σ±γ∗(x) := exp(±2πi〈γ∗, x〉) (8)

satisfy the eigenvalue equation
∆Rmσ

±
γ∗ = 4π

2|γ∗|2σ±γ∗ , (9)

and a well known completeness argument shows that all eigenvalues of ∆T are given by (8),
with corresponding eigenfunctions σ±γ∗ |FΓ . The growth of the eigenvalues is related to a volume
estimate as follows: if we denote the diameter of FΓ∗ by RΓ∗ and by BmR (0) the ball of radius
R around 0 in Rm, then we have

volBmR (0) ≤ NΓ (4π2R2) volFΓ∗ ≤ volBmR+RΓ∗ (0),
if we write

NΓ (t) =
∑
λn≤t

µ(λn).

Since volFΓ∗volFΓ = 1, it follows that

NΓ (t) =
volBm1 (0)

(2π)m
volT tm/2 +O(t(m−1)/2). (10)

Again, the nodal sets of generic eigenfunctions seem hopelessly complicated, as a consequence
of the high multiplicity of the eigenvalues. However, if we restrict attention to the linear com-
binations of the basic eigenfunctions σ±γ∗ , the situation greatly simplifies. Their nodal sets in
Rm are a union of hypersurfaces, e.g. for (σevenγ∗ )(x) := sin 2π〈γ∗, x〉 we obtain

(σevenγ∗ )
−1(0) =

⋃
k∈Z
{x ∈ Rm : 〈γ∗, x〉 = k/2}

and it is easy to see that these are inequivalent mod Γ precisely for k = 1, . . . , ν(γ∗), if we put

ν(γ∗) := min{〈γ∗, γ〉 > 0 : γ ∈ Γ}. (11)

We note that in terms of the basis representation of γ∗,

γ∗ =
m∑
j=1

kjγ
j ,

ν(γ∗) equals the greatest common divisor of the integers k1, . . . .., km. As a consequence, we see
that the eigenfunction of T induced by σevenγ∗ has exactly 2ν(γ∗) nodal domains. In this case
we can even compute the volume of the nodal set since the geometry is so simple: we find with

L(σevenγ∗ ) := volN(σγ∗) (12)

the relation

L(σevenγ∗ ) = volT (2|γ∗|) =
volT

π

√
λ(γ∗).



Nodal Patterns in Physics and Mathematics 185

3 Eigenvalue estimates

The examples above are very special as we emphasized before. Therefore, one must be careful
in generalizing phenomena observed there to more general mebranes like compact surfaces with
negative curvature, for which the geodesic flow is known to be ergodic. In this section, we will
discuss some results which are valid for all mebranes in order to see more clearly where our
examples deviate from the generic structure. The first and certainly most important general
result is due to Hörmander [16] for compact membranes and to Ivrii [18] for membranes with
boundary, after a long history beginning with Hermann Weyl [30] in 1911. It concerns the
eigenvalue asymptotics as exemplified in (10) and reads as follows.

Theorem 3 For any compact membrane (M, g), we have the asymptotic relation

N∆(t) :=
∑
λn≤t

µ(λn) =
volBm1 (0)

(2π)m
volM tm/2 +O(t(m−1)/2). (13)

We have seen that the sphere provides an example of a membrane where this estimate cannot
be improved, but it is not known what the best possible remainder term looks like in other
cases, like membranes with ergodic geodesic flow.
The asymptotic relation (13) leads to a relation between the eigenvalue and its number,

to wit

n ∼ volB
m
1 (0)

(2π)m
volM λm/2n +O(λ(m−1)/2n ).

It is of interest to know whether these asymptotic relations can be turned into effective
two-sided estimates, a result conjectured by Polya and proved in its probably most effective
form - in terms of the dependence of the constants involbed on the geometric data – by Li and
Yau [23]; in particular, one obtains the following generalization of a result by Faber and Krahn
[21] for plane mebranes:

volM ≥ CM,gλ−m/21 . (14)

The relation (13) does not tell us anything about the eigenfunctions, Hörmander’s proof,
however, does since it is based on the so called spectral function of ∆ which is defined as

e∆(p, q; t) :=
∑
λn≤t

σn(p)σ̄n(q). (15)

In fact, Hörmander proves that this function satisfies the estimate (10), too, if the membrane
is closed; the case with boundary is more complicated since the spectral function necessarily
diverges near the boundary. Again, this universal estimate is sharp, with the sphere provid-
ing again a counterexample, since any improvement in the estimate of e∆ implies the same
improvement for N∆. For closed membranes, we easily deduce the pointwise estimate

sup
p∈M
|σn(p)| ≤ CMλ(m−1)/4n ||σn||L2(M,g). (16)

This estimate can certainly be improved considerably for specific classes of membranes but the
precise extent of this improvement remains largely unknown. For a thorough review of this
question, see [19].
Coming back to the nodal sets, it has to be said that our knowledge is more restricted,

mainly because eigenfunctions are much less accessible in general than eigenvalues. In two
dimensions, the nodal lines are locally isometric to the nodal lines of harmonic polynomials, a
fact apparently first proved by Bers [1]. In higher dimensions, no comparable results are known;
but we do know that the (m − 1)-dimensional Hausdorff measure of N(σn) and the (m − 2)-
dimensional Hausdorff measure of its singularities, i.e. the set where also dσn vanishes, are both
finite (for more refined information, cf. [19, Sec. 2]).
The variational characterization of the eigenvalues in Theorem 2 allows some very useful

conclusions which are due to Courant ([8, Ch. 6]). In their formulation, we denote by BXε (p) the
ball around p of radius ε in an arbitrary metric space (which is here the Riemannian manifold
(M, g)).
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Theorem 4 (1) The union of all nodal sets is dense in M . More precisely, for some constant
CM and all p ∈M and n ∈ N ,

N(σn) ∩BMCM/√λn(p) �= ∅. (17)

(2) For all n ∈ N,σn has at most n nodal domains i.e.
NC(σn) ≤ n.

We note that part 2 of the Theorem has been somewhat improved for flat membranes by Pleijel
[28]. We have seen in Example 1, that NC(σn) = n if m = 1, but in Example 3 we found
that we may have NC(σn) = 2 for infinitely many n if M is a flat torus of dimension greater
than one; the same fact has been established by Lewy for the 3-sphere [22]. At any rate, there
does not seem to exist an easy correlation between nodal count and eigenvalue; this may seem
disappointing at first sight, but also hints at a possibly interesting fluctuation of the nodal
count for a fixed eigenvalue when the manifold is varied – which may encode finer geometric
information; we will return to this issue in the last section of this review.

4 The geometry of nodal sets

Since the nodal count does not correlate with the eigenvalues we may return to our examples for
inspiration; then it becomes apparent that the next likely candidate for such a correlation should
be the volume of the nodal set, L(σn). This was conjectured and proved in the two-dimensional
case by Brüning and Gromes ([3,4]).

Theorem 5 Let (M, g) be s smooth closed membrane in dimension two. Then there is a con-
stant CM such that

L(σn) ≥ C−1M
√
λn. (18)

It is not hard to see that this estimate extends to membranes with boundary and suitable
boundary value problems, and that it can be formulated with minimal smoothness. In our
examples, we can establish with some work also upper estimates of the same type, that is,

L(σn) ≤ CM
√
λn, (19)

but, so far, no such estimate could be established under the same natural smoothness assump-
tions, nor could any of these estimates be extended to higher dimensions. There are estimates,
however, in terms of different functions of the eigenvalue, among which we mention here only
the following result in the surface case, due to Donnelly and Fefferman [10].

Theorem 6 If M is closed and dimM = 2, then

L(σn) ≤ CMλ3/4n .
If, however, the assumption of sufficient differentiability is replaced by the requirement that
both the membrane and its metric be real-analytic, then the best possible estimate holds, as
was shown by Donnelly and Fefferman [11].

Theorem 7 If M is a real-analytic closed membrane with real-analytic metric g, then there is
a constant CM such that for all n ∈ N

C−1M
√
λn ≤ L(σn) ≤ CM

√
λn.

The analyticity is used here to exploit complex – analytic methods by analytic extension,
notably a fairly straightforward upper estimate for the volume of the nodal set of a com-
plex polynomial; the harder work consists in making explicit the analogy between σn and a
polynomial in m complex variables of degree

√
λn suggested by example 2 above. The said
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inequality rests on an integral geometric formula which asserts for a polynomial σ in Cm and
V := N(σ) ∩B1(0) the identity

Hm−1(V ) =
∫
L∈L
� (V ∩ L),

where � denotes the cardinality of a set, L is the (compact) space of lines in Cm, and Hm−1
denotes (m− 1)-dimensional Hausdorff measure.
Thus the upper estimate - which seems so elusive in the smooth case! - is quite plausible

under analyticity assumptions. The lower bound, however, is very difficult to obtain, even under
these stronger assumptions.
The volume is certainly only the simplest geometric invariant of the nodal set, and one would

like to proceed and to analyze the curvature. This seems to be a very difficult task since already
on a flat torus we can see that the curvature is not bounded in eigenspaces of high multiplicity.
Consequently, almost nothing is known in this direction; the following curious result in two
dimensions, due to Brüning [5], may be worth noting, though.

Theorem 8 Assume that a membrane M ⊂ R2 admits a sequence of eigenfunctions (σn)n∈N
with the property that all nodal lines have constant curvature. Then M is contained in the
following list:

(1) sectors of circles,
(2) sectors of annuli,
(3) membranes that arise from a triangle with angles (π/2, π/4, π/4) or (π/2, π/3, π/6) by
finitely many reflections in a side.

Another natural question would be to ask for the topological significance of nodal sets. As far
as we can see, such results exist again only in two dimensions. A rather well developed research
direction was initiated by Payne in [27] when he asked whether the second eigenfunction of a
plane membrane can be closed, and gave an negative answer in the case that the membrane
is, in addition, symmetric with respect to the coordinate axes. The question was settled in the
negative, after several intermediate steps, by Melas 1992 [24] for convex membranes while a
counterexample in the non simply connected case was provided in [17].
Another interesting question arises from the fact that the multiplicities of the eigenvalues

are bounded by the topology of M in two dimensions, but not in any higher dimension. We
can therefore ask for the extremal metrics g on a surface M which maximize the multiplicity
of any given eigenvalue; cf. [19] for a discussion of work on this problem.

5 Isospectrality and the nodal count

In 1966, Mark Kac [20] posed the now famous question “Can one hear the shape of a drum?”
His formulation paraphrases the intuitive idea that the fundamental frequencies of a drum, or
of any other vibrating system, should characterize it up to isometries, that from “hearing” the
system we can reconstruct its shape. In spite of its immediate appeal, the point that Kac made
was by no means new but a rather inevitable consequence of the success of Gustav Kirchhoff’s
spectral analysis, the prototypical inverse problem, cf. for example the report given by Sir
Arthur Schuster to the British Association in 1882, as quoted in [12, p. XI].
The answer to the celebrated question is also long known to be negative; with a counter

example in John Milnor’s paper of 1964 [25] began a long list of articles which provide counterex-
amples to the inverse spectral problem for membranes, in pointing out membranes (Mi, gi)i∈I
which are isospectral i.e. have the same spectrum for the Laplace-Beltrami operator but are
mutually not isometric. The first general construction (of pairs) was given by Sunada [29], the
first examples parametrized by a continuum by DeTurk and Gordon [9].
These examples tend to disguise the expectation that, generically, isospectrality should

imply isometry. A precise statement in this direction, however, seems to be available so far
only in two dimensions, cf. [26], so it makes sense to look for additional spectral data which
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might imply isospectrality directly. In this direction, Smilansky has proposed to use the nodal
count as additional information [2], and together with his coworkers he has corroborated this
conjecture in various examples (cf. e.g. [15]). As we have seen, the high fluctuations in the
nodal count indicate that there could be indeed a classifying potential, the extent of which
is certainly worth exploiting. These authors even proposed that the nodal count alone would
characterize a suitable class of systems, i.e. that one “can count the shape of a drum” [13]. In
spite of the appeal of this formulation, it runs into trouble in the framework of membranes as
soon as eigenvalues degenerate, requiring an “uncountable nodal count” since all eigenfunctions
ought to be considered. This case occurs, as we know, notably for the flat tori (the class of
membranes where Milnor’s counterexample comes from), and a beautiful test case is provided
by two mutually isospectral four-parameter families of flat tori in four dimensions, constructed
by Conway and Sloane [7]. Smilansky and [14] have analyzed some members of this family
numerically, proposing a different way of counting nodal domains which avoids multiplicities and
considers only the basic functions (8). Brüning and Klawonn [6] have taken up this question and
have shown that this way of counting actually distinguishes the two families while the knowledge
of the spectrum and the true nodal count of the basic functions, that is, the knowledge of the
numbers (cf. (8) and (10))

{|γ∗|, ν(γ∗) : γ∗ ∈ Γ ∗}
will not distinguish them. In order to achieve this, they go on and introduce certain extremal
values of the nodal count in each eigenspace which allow a tractable algebraic representation
and hence can be seen to distinguish the lattices definig the tori.
Coming back to Chladni, whose memory is honoured by this conference, we recall that

he became famous in his day for making people “see the sound”. To paraphrase the result of
Brüning and Klawonn, we are hence tempted to state (or rather: conjecture) that we can deduce
the shape of a flat torus from hearing it and seeing its Klangfiguren (in Euclidean space).

We are indebted to the GIF (German-Israeli Foundation for Scientific Research and Development) for
supporting our work on nodal sets.
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