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Abstract In this paper, we derive the Cheeger–Müller/Bismut–Zhang theorem for
manifolds with boundary and the gluing formula for the analytic torsion of flat vector bundles
in full generality, i.e., we do not assume that the Hermitian metric on the flat vector bundle
is flat nor that the Riemannian metric has product structure near the boundary.

0 Introduction

Given a flat complex vector bundle F of rank rk(F) with flat connection ∇F on a compact
m-dimensional smooth Riemannian manifold X without boundary, the Ray–Singer analytic
torsion [18] is a (weighted) linear combination of the determinants of the Laplacian with
values in the differential forms twisted by F , and the Ray–Singer metric on the determinant
of the cohomology of F is the product of its L2 metric and the Ray–Singer analytic torsion.
These are geometric invariants which depend on the metrics on F and on the Riemannian
manifold.

Let us explain this in greater detail. For a finite dimensional complex vector space E ,
set det E := �max E , and denote by (det E)−1 := (det E)∗ the dual line. If we denote by
H•(X, F) = ⊕m

p=0 H p(X, F) the singular cohomology of X with coefficients in F , then
the determinant of the cohomology of F is the complex line

det H•(X, F) =
m⊗

p=0

(
det H p(X, F)

)(−1)p

. (0.1)
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1086 J. Brüning, X. Ma

Denote by�p(X, F) the space of smooth differential p-forms on X with values in F , and
let�(X, F) = ⊕p�

p(X, F). The flat connection ∇F extends naturally to a differential, d F ,
on �(X, F). The de Rham theorem gives us a canonical isomorphism of H•(X, F) and the
cohomology of the de Rham complex (�(X, F), d F ).

Let gT X be a Riemannian metric on X and let hF be a Hermitian metric on F . Let d F∗
be the (formal) adjoint operator of d F associated with gT X and hF . Then D := d F + d F∗
is a first order self-adjoint elliptic operator acting on �(X, F), and the heat semi-group
exp(−t D2) of D2 preserves the spaces �p(X, F) for any p.

Let � be the gamma function. For u ∈ R, u > m/2, set

θ(u) := − 1

�(u)

∞∫

0

tu
m∑

p=0

(−1)p p
[
Tr|�p(X,F)[exp(−t D2)] − dim H p(X, F)

]dt

t
. (0.2)

The function θ extends to a meromorphic function of u ∈ C which is holomorphic at u = 0.
The Ray–Singer analytic torsion of X with coefficients in F is defined as

T (X, gT X , hF ) = exp

{
1

2

∂θ

∂u
(0)

}

. (0.3)

By identifying H•(X, F) with the space of harmonic forms, Ker(D2), by Hodge theory,
H•(X, F) is naturally equipped with a L2-metric h H•(X,F) induced by the L2-metric of
�(X, F). We denote by | · |L2

det H•(X,F) the induced metric on det H•(X, F). The Ray–Singer
metric on the line det H•(X, F) is defined by

‖ · ‖RS
det H•(X,F) := T (X, gT X , hF )| · |L2

det H•(X,F). (0.4)

If hF is flat (i.e., (F,∇F ) is induced by an unitary representation of the fundamental
group of X ), then the celebrated Cheeger–Müller theorem [7,16] tells us that in this case the
Ray–Singer metric can be identified with the so-called Reidemeister metric on det H•(X, F)
which is a topological invariant of the flat vector bundle F [15]. Bismut and Zhang [4] and
Müller [17] simultaneously considered generalizations of this result. Müller [17] extended
his result to the case where the dimension of the manifold is odd and only the metric induced
on det F is required to be flat. Bismut and Zhang [4] generalized the original Cheeger–Mül-
ler theorem to arbitrary flat vector bundles with arbitrary Hermitian metrics. There are also
various extensions to the equivariant case, cf. [11,12,5]. Bismut and Goette [3] obtained a
family version of the Bismut–Zhang theorem under the assumption that there exists a fib-
erwise Morse function for the fibration in question, which generalizes all the above results.
See also [8] for a survey on work relevant to this line of approach.

Assume now that X is a manifold with boundary. The corresponding results were studied
in [11] and [12,22,9], under the assumption that hF is flat and that gT X has product structure
near the boundary. In particular, these papers establish a Cheeger–Müller type theorem and a
gluing formula for the Ray–Singer metric in this setting. In [6, Theorem 0.1], we extended the
anomaly formula for Ray–Singer metrics [4, Theorem 0.1] to manifolds with boundary, not
assuming that the Hermitian metric on the flat vector bundle is flat nor that the Riemannian
metric has product structure near the boundary (more relevant references can be found in
[6]). In [13], Ma and Zhang extended the results in [6] to the L2-analytic torsion.

In this paper, we will establish the Cheeger–Müller/Bismut–Zhang theorem on manifolds
with boundary, Theorem 0.1, and the corresponding gluing formula, Theorem 0.3, without
any condition on the Riemannian metric of the manifold or the Hermitian metric of the flat
vector bundle. To do so, we will derive first a Bismut–Zhang type theorem, Theorem 2.2,
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On the gluing formula for the analytic torsion 1087

which is a special case of Theorem 0.1, for flat vector bundles on manifolds X with boundary
under the assumption that gT X , hF have product structure near the boundary, as an application
of [5, Theorem 0.2]. Then we establish the anomaly formula for the analytic torsion, Theo-
rem 3.4, which extends the corresponding result of [6] to the situation where we impose the
relative boundary condition on some components of the boundary, and the absolute boundary
condition on the complement. Finally, we obtain the gluing formula, Theorem 0.3, for the
analytic torsion of flat vector bundles, by combining Theorem 2.2 and Theorem 3.4. Again
we do not assume that the Hermitian metric on the flat vector bundle is flat nor that the
Riemannian metric has product structure near the boundary.

Let us describe the geometric setting in greater detail. We assume that the manifold X
has boundary ∂X = Y1 ∪ V1, where Y1, V1 are disjoint (possibly empty) components of ∂X .
Let H•(X, Y1, F) be the singular cohomology of (X, Y1) with coefficients in F (cf. (1.6),
(1.7)). The corresponding Hodge theorem (cf. Theorem 1.1) tell us that we can still identify
H•(X, Y1, F) with a certain space of harmonic forms, which satisfy a suitable boundary
condition. Then we can define the Ray–Singer analytic torsion T (X, Y1, gT X , hF ) and the
Ray–Singer metric ‖ · ‖RS

det H•(X,Y1,F)
on the complex determinant line det H•(X, Y1, F) (cf.

Def. 1.4) in analogy with (0.2), (0.4).
Let f be a Morse function on X fulfilling the assertion of Lemma 1.5 below with an asso-

ciated gradient vector field ∇ f (which need not be induced by gT X ). Then the corresponding
Thom–Smale complex [20] computes also H•(X, Y1, F), and this induces the Milnor metric
‖ · ‖M,∇ f

det H•(X,Y1,F)
on det H•(X, Y1, F) which we define in Definition 1.6 below.

Note that the Milnor metric does not depend on the Riemannian metric gT X on X , it
depends only on the gradient vector field ∇ f induced by f and the Hermitian metric hF on
F . If hF is a flat metric on F , then ‖·‖M,∇ f

det H•(X,Y1,F)
is equal to the Reidemeister metric (which

is defined by using any smooth triangulation of X ) as in [15, Theorem 9.3], [4, Remark 1.10]
(cf. Remark 1.8), thus it is a topological invariant.

Let θ(F, hF ) be the closed 1-form on X given by (cf. [4, Def. 4.5])

θ(F, hF ) = Tr
[
(hF )−1∇F hF

]
. (0.5)

Recall that (F,∇F , hF ) is called unimodular if the metric hdet F on det F induced by hF is
flat. Thus θ(F, hF ) = 0 if and only if (F,∇F , hF ) is unimodular.

Let ∇T X be the Levi-Civita connection on (T X, gT X ) and denote by e(T X,∇T X ) the
Chern–Weil form of the Euler class of T X associated with ∇T X [cf. (3.5)]. Let gT ∂X be
the metric on T ∂X induced by gT X . Let ∇T Y1 , ∇T V1 be the Levi-Civita connection on
(T Y1, gT ∂X |Y1), (T V1, gT ∂X |V1). Let H•(∂X,C) be the singular cohomology group of ∂X ,
and

χ(∂X) =
∑

j

(−1) j dim H j (∂X,C) (0.6)

the Euler characteristic of ∂X .
Denote by δX the current of integration on X and by π : T X → X the natural projection.

Let ψ(T X,∇T X ) be the Mathai–Quillen current on T X constructed in [4, §3], such that

dψ
(

T X,∇T X
)

= π∗e
(

T X,∇T X
)

− δX . (0.7)

We define the currents ψ(T Y1,∇T Y1), ψ(T V1,∇T V1) on T Y1, T V1 analogously.
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1088 J. Brüning, X. Ma

Next we use the inward geodesic flow to identify a neighborhood of the boundary ∂X with
the collar ∂X × [0, ε], and we identify ∂X × {0} with the boundary ∂X , then there exists a
family of metrics, gT ∂X

xm
, on T ∂X defined by

gT X |(y,xm ) = dx2
m + gT ∂X

xm
(y), (y, xm) ∈ ∂X × [0, ε). (0.8)

Let g̃T X be a smooth metric on T X such that g̃T X = gT X on ∂X , and g̃T X has product
structure on ∂X × [0, ε),

g̃T X |(y,xm ) = dx2
m + gT ∂X (y). (0.9)

Let ∇̃T X be the Levi-Civita connection on (T X, g̃T X ). Let Ẽ(T X, ∇̃T X ,∇T X ) be the sec-
ondary relative Euler class of T X in the sense of Chern–Simons defined in [6, Theorem 1.9]
(cf. Theorem 3.1).

The first main result of this paper extends the Cheeger–Müller/Bismut–Zhang theorem to
manifolds with boundary; it reads as follows.

Theorem 0.1 We have the identity

log

⎛

⎝

(‖ · ‖RS
det H•(X,Y1,F)

‖ · ‖M,∇ f
det H•(X,Y1,F)

)2
⎞

⎠ = −
∫

X

θ(F, hF )(∇ f )∗ψ(T X, ∇̃T X )

+ 1

2

∫

Y1

θ(F, hF )(∇ f )∗ψ(T Y1,∇T Y1)

− 1

2

∫

V1

θ(F, hF )(∇ f )∗ψ(T V1,∇T V1)

+
∫

(X,Y )

Ẽ(T X, ∇̃T X ,∇T X )θ(F, hF )

+ rk(F)

⎛

⎜
⎝

∫

V1

+(−1)m+1
∫

Y1

⎞

⎟
⎠ B(∇T X )

− 1

2
rk(F)χ(∂X) log 2, (0.10)

with the notation (3.10) for
∫
(X,Y ) and with B(∇T X ) the secondary characteristic form intro-

duced in [6], [see (3.6)], which is zero if ∂X is totally geodesic in (X, gT X ).
In particular, if (F,∇F , hF ) is unimodular, then

log

⎛

⎝

(‖ · ‖RS
det H•(X,Y1,F)

‖ · ‖M,∇ f
det H•(X,Y1,F)

)2
⎞

⎠ = rk(F)

⎛

⎜
⎝

∫

V1

+(−1)m+1
∫

Y1

⎞

⎟
⎠ B(∇T X )

− 1

2
rk(F)χ(∂X) log 2. (0.11)

In fact, let ẽ(T X,∇T X
s ), ẽb(Y,∇T X

s ) be the forms defined in [6, Definition 1.8] for the
path of metrics gT X

s = (1 − s)g̃T X + sgT X , then with o(T X) the orientation line,

Ẽ(T X, ∇̃T X ,∇T X ) = (̃e(T X,∇T X
s ),−ẽb(Y,∇T X

s )) ∈ �m−1(X, Y, o(T X)) (0.12)
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On the gluing formula for the analytic torsion 1089

[cf. (3.8)]. Thus by [6, (4.37)], (0.8), (0.9) and (3.15),

Ẽ(T X, ∇̃T X ,∇T X ) = 0 if m is odd,

ẽb(Y,∇T X
s ) = 0 if m is even.

(0.13)

Assume now (F,∇F , hF ) is unimodular and gT X has product structure near the boundary
[i.e., gT X verifies (0.9)], then by Theorem 3.4, ‖ · ‖RS

det H•(X,Y1,F)
does not depend on gT X ,

and from (0.11), ‖ ·‖M,∇ f
det H•(X,Y1,F)

does not depend on f , ∇ f , showing that it is a topological

invariant. In fact by the same argument as in [15, Theorem 9.3], ‖ · ‖M,∇ f
det H•(X,Y1,F)

is again
equal to the Reidemeister metric (cf. Def. 1.7) on det H•(X, Y1, F) which is a topological
invariant. Note that (0.11) can not be directly obtained by passing to the doubled manifold
and applying [5], as (2.3) does not hold in general. The anomaly formula, Theorem 3.4, plays
a role here.

Remark 0.2 If hF is flat and gT X has product structure near ∂X , then (2.3) holds for hF and
(0.11) reduces to

log

(‖ · ‖RS
det H•(X,Y1,F)

‖ · ‖M,∇ f
det H•(X,Y1,F)

)2

= −1

2
rk(F)χ(∂X) log(2). (0.14)

This result was established in [12, Theorem 4.5], by passing to the double of X and applying
results from [7,16] and [11].

Next we explain the gluing formula for the analytic torsion.
Let Z be a m-dimensional compact manifold with boundary ∂Z = Y1 ∪ V1 ∪ Y2 ∪ V2,

where Yi , Vi are disjoint (possibly empty) components of ∂Z which we introduce to allow
different boundary conditions on Yi and Vi . We suppose that V is a closed hypersurface in the
interior of Z such that Z = Z1 ∪V Z2, and Z1, Z2 are compact manifolds with boundaries
∂Z1 = V ∪ Y1 ∪ V1, ∂Z2 = V ∪ Y2 ∪ V2, respectively, cf. Fig. 1.

Y

Z Z

2Y1

1 2

V1 V2

Z

V

Fig. 1 The setting of the gluing formula

Let F be a flat complex vector bundle on Z with flat connection ∇F . As above, we
define the singular cohomology groups H•(Z , Y1 ∪ Y2, F), H•(Z2, Y2, F) and H•(Z1, V ∪
Y1, F), and the corresponding complex lines det H•(Z , Y1 ∪ Y2, F), det H•(Z2, Y2, F) and
det H•(Z1, V ∪ Y1, F).
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1090 J. Brüning, X. Ma

Let KZ be a smooth triangulation of Z such that KZ induces also a smooth triangulation
of V . We denote by KZ1 , KZ2 , KY1 , KY2 , KV the smooth triangulation of Z1, Z2, Y1, Y2, V
induced by KZ . Then by the argument leading to (1.6), we have a short exact sequence of
complexes of dual simplicial chains

0 �� C•(KZ1 ,KY1 ∪ KV , F)

∂̃

��

�� C•(KZ ,KY1 ∪ KY2 , F)

∂̃

��

�� C•(KZ2 ,KY2 , F)

∂̃

��

�� 0,

(0.15)

which induces an exact sequence in cohomology,

· · · → Hi (Z , Y1 ∪ Y2, F) → Hi (Z2, Y2, F) → Hi+1(Z1, V ∪ Y1, F) → · · · . (0.16)

Recall that for an exact sequence of finite dimensional vector spaces

0 → E0 δ→ E1 δ→ · · · δ→ En → 0, (0.17)

the complex determinant line det E := ⊗n
j=0(det E j )(−1) j

has a canonical section σδ (in
other words, det E is canonically isomorphic to C) (cf. [15, §3], [2, §1], [4, (1.4)]): we choose

s j,k ∈ E j such that {s j,k}k j
k=1 projects to a basis of E j/Ker(δ|E j ), then with ∧ks j,k :=

s j,1 ∧ · · · ∧ s j,k j ,

σδ :=(∧ks0,k)⊗
(
(∧kδ(s0,k)) ∧ (∧ks1,k)

)−1 ⊗ · · · ⊗ (∧kδ(sn−1,k)
)(−1)n ∈det E (0.18)

is non-vanishing and does not depend on the choice of s j,k .

Any Hermitian metric hEi
on Ei , i = 1, · · · , n, induces a metric ‖ · ‖det E on det E . If δ∗

is the adjoint of δ with respect to hE := ⊕i hEi
, and
 := (δ+ δ∗)2 = δ∗δ+ δδ∗, then from

[2, Theorem 1.5] (cf. [4, Theorem 1.1]), we know that

‖σδ‖det E =
∏

j

(
det(
|E j )

)(−1) j j/2 =: T (E, hE ). (0.19)

We call T (E, hE ) the analytic torsion of the exact sequence (E, v) associated with hE .
Thus from (0.16) and (0.18), we get the canonical section � of the complex line

λ(F)=(det H•(Z , Y1 ∪ Y2, F))−1⊗det H•(Z1, V ∪ Y1, F)⊗det H•(Z2, Y2, F). (0.20)

Let gT Z be a Riemannian metric on the tangent bundle T Z of Z , and let hF be a Hermitian
metric on F . Let χ(V ) be the Euler characteristic of V as in (0.6).

Let ‖ · ‖RS
det H•(Z ,Y1∪Y2,F)

, ‖ · ‖RS
det H•(Z1,V ∪Y1,F)

, ‖ · ‖RS
det H•(Z2,Y2,F)

be the Ray–Singer
metrics on det H•(Z , Y1 ∪ Y2, F), det H•(Z1, V ∪ Y1, F), det H•(Z2, Y2, F) induced by
gT Z , hF (cf. Def. 1.4). Let ‖ · ‖RS

λ(F) be the corresponding Ray–Singer metric on λ(F).
The second main result of this paper is the following gluing formula for the analytic

torsion.

Theorem 0.3 We have the identity

log
(
‖�‖RS,2

λ(F)

)
= −rk(F)χ(V ) log(2)+ 2 (−1)m+1 rk(F)

∫

V

B(∇T Z1), (0.21)

with B(∇T Z1) the secondary characteristic form introduced in [6], [see (3.6)], which is zero
if V is totally geodesic in (Z , gT Z ).
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On the gluing formula for the analytic torsion 1091

Let T (Z , Y1 ∪Y2, gT Z , hF ), T (Z1, V ∪Y1, gT Z , hF ), T (Z2, Y2, gT Z , hF ) be the associ-
ated analytic torsions which will be defined in Definition 1.3. We denote by T (H , hH ) the
analytic torsion (in the sense of (0.19)) of the exact sequence (0.16) with L2-metrics induced
by Theorem 1.1 (d) and H 0 = H0(Z1, V ∪ Y1, F). Then (0.21) can be reformulated as

T (H , hH ) · T (Z1, V ∪ Y1, gT Z , hF ) · T (Z2, Y2, gT Z , hF )

= T (Z , Y1 ∪ Y2, gT Z , hF ) · 2− 1
2 rk(F)χ(V )e(−1)m+1rk(F)

∫
V B(∇T Z1 ). (0.22)

In the same way, from (0.18), (1.7), we get the canonical section �̃ of the complex line

λ̃(F) = (det H•(Z , F)
)−1 ⊗ det H•(Z , Y1, F)⊗ det H•(Y1, F). (0.23)

Analogously, we obtain the following result.

Theorem 0.4 We have the identity

log
(
‖̃�‖RS,2

λ̃(F)

)
= ((−1)m+1 − 1

)
rk(F)
∫

Y1

B(∇T Z ), (0.24)

with B(∇T Z ) the secondary characteristic form introduced in [6], [see (3.6)]. This expression
is zero if Y1 is totally geodesic in (Z , gT Z ).

Note that we do not assume that the Hermitian metric hF is flat nor that gT Z has product
structure near the boundary ∂Z nor near V . If hF is flat and gT Z has product structure near the
boundary ∂Z and near V , then Theorems 0.3, 0.4 have been established first in [12, Theorem
5.9] (cf. [22, Theorems 1.1, 1.2]).

This paper is organized as follows. In Sect. 1, we construct Ray–Singer metrics and Mil-
nor metrics for a flat vector bundle. In Sect. 2, we establish the comparison formula for
Ray–Singer metrics and Milnor metrics, Theorem 2.2, when the metrics have product struc-
ture near the boundary which is a special case of Theorem 0.1. In Sect. 3, we establish first
the anomaly formula of the analytic torsion, Theorem 3.4, then we prove Theorem 0.1 by
combining Theorem 2.2 with Theorem 3.4, and finally the gluing formula for the analytic
torsion, Theorems 0.3, 0.4.

A preliminary version of this paper was written in 2006, for some recent related works
see [10,21].

1 Ray–Singer metrics and Milnor metrics

This Section is organized as follows: we recall in Sect. 1.1 the construction of a simplicial
complex from a smooth trivialization. Then we explain in detail the definition of Ray–Singer
and Milnor metrics for a flat vector bundle on a compact manifold with boundary in Sects.
1.2 and 1.3, respectively.

1.1 Singular cohomology

From now on let X be a m-dimensional compact manifold with smooth boundary ∂X =
Y1 ∪ V1, where Y1 and V1 are disjoint (possibly empty) components of ∂X . Let F be a flat
complex vector bundle on X with flat connection ∇F . The following presentation follows
[4, §1 b)].

Let H•(X, F∗) = ⊕ j H j (X, F∗) (resp. H•(X, Y1, F∗)) denote the singular homology
of X (resp.(X, Y1)) with coefficients in F∗, and let H•(X, F) = ⊕ j H j (X, F) (resp.
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1092 J. Brüning, X. Ma

H•(X, Y1, F)) denote the singular cohomology of X (resp. (X, Y1)) with coefficients in
F . Then for 0 � j � m, we have canonical identifications

Hj (X, F∗) = (H j (X, F))∗, Hj (X, Y1, F∗) = (H j (X, Y1, F))∗. (1.1)

Let K be a smooth triangulation of X , then K1 := K|Y1 also is a smooth triangulation
of Y1. K consists of a finite set of simplexes, a, each with a fixed orientation. Let B be the
finite subset of X formed by the barycenters of the simplexes in K. Let b : K → B denote
the obvious one-to-one map. For 0 � i � m, let Ki be the union of the simplexes in K of
dimension � i , such that for 0 � i � m, Ki \ Ki−1 is the union of simplexes of dimension i .

If a ∈ K, let [a] be the real line generated by a. Let (C•(K, F∗), ∂) be the complex of
simplicial chains in K with values in F∗. For 0 � i � m, we define

Ci (K, F∗) :=
∑

a∈Ki \Ki−1

[a] ⊗R F∗
b(a). (1.2)

∂ maps Ci (K, F∗) into Ci−1(K, F∗). Also, the homologies of the complexes (C•(K, F∗), ∂)
and (C•(K, F∗)/C•(K1, F∗), ∂) are canonically identified with the singular homologies
H•(X, F∗) and H•(X, Y1, F∗), respectively. We also have the short exact sequence of com-
plexes

0 �� C•(K1, F∗)

∂

��

�� C•(K, F∗)

∂

��

�� C•(K, F∗)/C•(K1, F∗)

∂

��

�� 0.

(1.3)

The long exact sequence induced by (1.3) in homology is canonically identified with the
exact sequence of singular homologies,

· · · → Hi (X, F∗) → Hi (X, Y1, F∗) → Hi−1(Y1, F∗) → · · · . (1.4)

If a ∈ K, let [a]∗ be the line dual to the line [a]. Let (C•(K, F), ∂̃) be the complex dual
to the complex (C•(K, F∗), ∂). In particular, for 0 � i � m, we have the identity

Ci (K, F) =
∑

a∈Ki \Ki−1

[a]∗ ⊗R Fb(a). (1.5)

Let (C•(K,K1, F), ∂̃) be the dual complex of (C•(K, F∗)/C•(K1, F∗), ∂). The cohomol-
ogy of the complexes (C•(K, F), ∂̃) and (C•(K,K1, F), ∂̃) is canonically identified with
H•(X, F) and H•(X, Y1, F), respectively. Then the short exact sequence of complexes

0 �� C•(K,K1, F)

∂̃

��

�� C•(K, F)

∂̃

��

�� C•(K1, F)

∂̃

��

�� 0.

(1.6)

induces the long exact sequence of singular cohomologies,

· · · → Hi (X, F) → Hi (Y1, F) → Hi+1(X, Y1, F) → · · · . (1.7)

1.2 Ray–Singer metrics

Denote by �(X, F) := ⊕m
p=0�

p(X, F) := ⊕m
p=0C∞(X,�p(T ∗ X) ⊗F) the space of

smooth differential forms on X with values in F . The flat connection ∇F extends naturally
to a differential, d F , on �(X, F).
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On the gluing formula for the analytic torsion 1093

Let gT X be a Riemannian metric on the tangent bundle T X of X , and let hF be a Hermitian
metric on F . Let o(T X) be the orientation bundle of T X , which is a flat real line bundle on
X . Let dvX be the Riemannian volume element on (X, gT X ), then we can view dvX as a
section of �m(T ∗ X)⊗ o(T X). We define a Hermitian product on �(X, F) by

〈σ, σ ′〉 :=
∫

X

〈σ, σ ′〉�(T ∗ X)⊗F dvX , (1.8)

for σ, σ ′ ∈ �(X, F); we denote by L2(X,�(T ∗ X) ⊗F) the Hilbert space obtained by
completion. Let d F∗ be the formal adjoint of d F with respect to (1.8). Set

D = d F + d F∗. (1.9)

Then for any p,

D2 = d F d F∗ + d F∗d F : �p(X, F) → �p(X, F) (1.10)

is the Hodge Laplacian associated with the pair of metrics gT X and hF .
Next we need to define self-adjoint extensions of D by elliptic boundary conditions. To

do so, we use the metric on X to identify the normal bundle n to ∂X in X with the orthog-
onal complement of T ∂X in T X |∂X . Denote by en the inward pointing unit normal vector
field along ∂X , and by en its dual vector. We use i(·) for interior and w(·) for exterior
multiplication.

Let �p
bd(X, Y1, F) be the subspace of �p(X, F) defined by

�
p
bd(X, Y1, F) := {σ ∈ �p(X, F); w(en)σ = 0 on Y1, i(en)σ = 0 on V1

}
. (1.11)

Then the restriction of the operator D on �p
bd(X, Y1, F) is self-adjoint.

In the same way, we define �p
bd,D2(X, Y1, F) the subspace of �p(X, F) by

�
p
bd,D2(X, Y1, F) :=

{
σ ∈ �p(X, F); w(en)σ = w(en)(d F∗σ) = 0 on Y1,

i(en)σ = i(en)(d
Fσ) = 0 on V1

}
.

(1.12)

Set

D2
bd = D2|�bd,D2 (X,Y1,F). (1.13)

Thus D2
bd is the operator D2 with the relative boundary condition on Y1 and the absolute

boundary condition on V1, and it is essentially self-adjoint.
We define the space of harmonic forms H p(X, Y1, F) by

H p(X, Y1, F) =
{
σ ∈ �p

bd,D2(X, Y1, F); D2σ = 0
}
. (1.14)

Let K be a smooth triangulation of X as in Sect. 1.1. We define the de Rham map P∞ :
�(X, F) → C•(K, F) by

P∞(σ )(a) =
∫

a

σ for σ ∈ �(X, F), a ∈ C•(K, F∗). (1.15)

Theorem 1.1 (Hodge decomposition theorem)

(a) We have

H p(X, Y1, F) = Ker(d F ) ∩ Ker(d F∗) ∩�p
bd(X, Y1, F). (1.16)
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1094 J. Brüning, X. Ma

(b) The spaces H p(X, Y1, F) are finite dimensional.
(c) We have the orthogonal decompositions

�
p
bd(X, Y1, F)=H p(X, Y1, F)⊕d F

(
�

p−1
bd (X, Y1, F)

)
⊕d F∗ (�p+1

bd (X, Y1, F)
)
,

(1.17a)

L2(X,�p(T ∗ X)⊗ F) = H p(X, Y1, F)⊕ d F
(
�

p−1
bd (X, Y1, F)

)
(1.17b)

⊕ d F∗
(
�

p+1
bd (X, Y1, F)

)
.

Here denotes the L2-closure.
(d) The inclusion ı : H p(X, Y1, F) → Ker(d F ) ∩ �p

bd(X, Y1, F) composed with the de
Rham map P∞ maps into the space of cocycles in C p(K,K1, F), and we obtain an
isomorphism

P∞ : H p(X, Y1, F) → H p(X, Y1, F). (1.18)

Proof If hF is flat, this result was proved in [18, Prop. 4.2, Corollary 5.7] (cf. [16, p. 239],
[12, Theorem 1.10]), the same proof works in the general case here. ��

For λ ∈ R, 0 � p � m, set

E p
λ (X, Y1, F) =

{
σ ∈ �p

bd,D2(X, Y1, F); D2σ = λσ
}
. (1.19)

Let PH be the orthogonal projection from�(X, F) onto H (X, Y1, F)with respect to the
Hermitian product (1.8). Set P⊥

H =1−PH . Let N be the number operator of�(X, F), i.e., N
acts as multiplication by p on�p(X, F). We denote the supertrace by Trs[·] := Tr[(−1)N ·].

Let exp(−t D2
bd) be the heat semi-group of D2

bd, with D2
bd from (1.13).

Definition 1.2 For u ∈ C,Re(u) > 1
2 m, set

θ F (u) := −Trs

[
N (D2

bd)
−u P⊥

H

]

= − 1

�(u)

∞∫

0

tu Trs

[
N exp(−t D2

bd)P
⊥
H

] dt

t
.

(1.20)

θ F (u) extends to a meromorphic function of u ∈ C which is holomorphic at u = 0 in view
of Theorem 3.2 (cf. also [19]).

Definition 1.3 The Ray–Singer analytic torsion T (X, Y1, gT X , hF ) of F (with the relative
boundary condition on Y1 and the absolute boundary condition on V1) is defined by

T (X, Y1, gT X , hF ) := exp

(
1

2

∂θ F

∂u
(0)

)

. (1.21)

Let det H•(X, Y1, F) be the complex line defined by

det H•(X, Y1, F) :=
m⊗

j=0

(
det H j (X, Y1, F)

)(−1) j

. (1.22)

By the identification in Theorem 1.1 (d), H•(X, Y1, F) inherits a L2-metric h H•(X,Y1,F) from
the Hermitian product (1.8) on �(X, F). Let | · |L2

det H•(X,Y1,F)
be the corresponding metric

on det H•(X, Y1, F).
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Definition 1.4 The Ray–Singer metric‖·‖RS
det H•(X,Y1,F)

on the complex line det H•(X, Y1,F)
is defined by

‖ · ‖RS
det H•(X,Y1,F) := | · |L2

det H•(X,Y1,F)T (X, Y1, gT X , hF ). (1.23)

1.3 Milnor metrics and Reidemeister metrics

Let f be a Morse function on X . Let f |∂X be the restriction of f on ∂X . Set

B = {x ∈ X; d f (x) = 0}, B∂ = {x ∈ ∂X; d( f |∂X )(x) = 0}. (1.24)

For x ∈ B, let ind(x) be the index of f at x , i.e., the number of negative eigenvalues of the
quadratic form d2 f (x) on Tx X .

Consider the differential equation

∂y

∂t
= −∇ f (y), (1.25)

and denote by (ψt ) the associated flow. For x ∈ B, the unstable cell W u(x) and the stable
cell W s(x) of x are defined by

W u(x) =
{

y ∈ X; lim
t→−∞ψt (y) = x

}

,

W s(x) =
{

y ∈ X; lim
t→+∞ψt (y) = x

}

.

(1.26)

The Smale transversality conditions [20] require that

for x, y ∈ B, x �= y, W u(x) and W s(y) intersect transversally. (1.27)

Lemma 1.5 There exists a Morse function f on X such that f |∂X is a Morse function on
∂X, B∂ = B ∩ ∂X, and for x ∈ B∂ , the restriction of d2 f (x) to the normal bundle n to
∂X in X verifies d2 f (x)|n > 0. Moreover, there exists a gradient vector field ∇ f of f
(defined by some metric g̃T X on X), verifying the Smale transversality conditions (1.27) and
∇ f |∂X ∈ T ∂X.

Proof We have a natural Z2-action on X := X ∪∂X X , and ∂X is the fixed point set of
the Z2-action. By the proof of [5, Theorem 1.10], we can construct a Z2-invariant Morse
function f : X → R and a Z2-invariant metric gT X

0 on T X such that if ∇ f is the corre-
sponding gradient vector field of f , then ∇ f verifies the Smale transversality conditions and
∇ f |∂X ∈ T ∂X , moreover, if x ∈ ∂X is a critical point of f , then d2 f (x)|n > 0. So f |∂X is
also a Morse function on ∂X . ��

From now on, we fix a Morse function f on X fulfilling the conditions of Lemma 1.5.
For x ∈ B ∩ Y1, set

W u
Y1
(x) = W u(x) ∩ Y1, W s

Y1
(x) = W s(x) ∩ Y1. (1.28)

As d2 f (x)|n > 0, for x ∈ B∂ , and ∇ f |∂X ∈ T ∂X , we know that ∇ f |∂X verifies also the
Smale transversality conditions (1.27).

123
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For x ∈ B, we denote (as in Sect. 1.1) by [W u(x)] the real line generated by W u(x), and
by [W u(x)]∗ the dual line. Set

C j (W
u, F) =

⊕

x∈B, ind(x)= j

[W u(x)] ⊗ F∗
x ,

C j (W
u
Y1
, F) =

⊕

x∈B∩Y1, ind(x)= j

[W u(x)] ⊗ F∗
x .

(1.29)

There is a map ∂ : C j (W u, F∗) → C j−1(W u, F∗) with ∂2 = 0, which defines the Thom–
Smale complex (C•(W u, F∗), ∂) (cf. [20], [1, Chap. 7], [4, (1.30)]). This complex calcu-
lates the homology H•(X, F∗) (cf. [4, Theorem 1.6]). As d2 f (x)|n > 0, for x ∈ B∂ , and
∇ f |∂X ∈ T ∂X , we know that

∂C j (W
u
Y1
, F∗) ⊂ C j−1(W

u
Y1
, F∗), (1.30)

thus the Thom–Smale complex (C•(W u
Y1
, F∗), ∂) is a sub-complex of (C•(W u, F∗), ∂).

As in Sect. 1.1, let (C•(W u, F), ∂̃) and (C•(W u
Y1
, F), ∂̃), be the dual complex of

(C•(W u, F∗), ∂) and (C•(W u
Y1
, F∗), ∂), respectively. Then the complexes (C•(W u, F), ∂̃)

and (C•(W u
Y1
, F), ∂̃) calculate the cohomology H•(X, F) and H•(Y1, F).

Let j be the natural morphism of complexes

j : C•(W u, F) → C•(W u
Y1
, F). (1.31)

Define

C•(W u/W u
Y1
, F) := Ker j, (1.32)

and denote by H•(C•(W u/W u
Y1
, F), ∂̃) the cohomology of the complex (C•(W u/W u

Y1
, F),

∂̃). Then by standard arguments we get a canonical isomorphism

H•(C•(W u/W u
Y1
, F), ∂̃) � H•(X, Y1, F). (1.33)

The metric hF
x (x ∈ B) determines a metric on C•(W u, F) such that the elements

[W u(x)]∗ ⊗ Fx are mutually orthogonal in C•(W u, F), and if x ∈ B, w ∈ Fx
∣
∣W u(x)∗ ⊗ w

∣
∣ = |w|hFx . (1.34)

Let h
C•(W u/W u

Y1
,F) be the metric on C•(W u/W u

Y1
, F) induced by the metric on C•(W u, F).

Finally, let ‖ · ‖det C•(W u/W u
Y1
,F) be the metric on the complex line

det C•(W u/W u
Y1
, F) =

m⊗

j=0

(
det C j (W u/W u

Y1
, F)
)(−1) j

(1.35)

associated with the metric hF (cf. also [4, §1a)]).
Consider now a complex of finite dimensional vector spaces over C

0 → E0 δ→ E1 δ→ · · · δ→ En → 0, (1.36)

with cohomology groups H j (E) := H j (E, δ) := Ker(δ|E j )/Im(δ|E j−1). As in the special
(0.17), there is a canonical isomorphism

det E :=
n⊗

j=0

(det E j )(−1) j � det H•(E) :=
n⊗

j=0

(det H j (E))(−1) j
(1.37)
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which is defined as follow: if 0 �= s j ∈ det(E j/Ker(δ|E j )), 0 �= μ j ∈ det H j (E), then

det E � s0 ⊗ μ0 ⊗ (δ(s0) ∧ μ1 ∧ s1)
−1 ⊗ · · · ⊗ (δ(sn−1) ∧ μn)

(−1)n

−→ μ0 ⊗ μ−1
1 ⊗ · · · ⊗ (μn)

(−1)n ∈ det H•(E). (1.38)

As in [4, Definiton 1.9], we can define the Milnor metric.

Definition 1.6 Let ‖ · ‖M,∇ f
det H•(X,Y1,F)

be the metric on det H•(X, Y1, F) corresponding to

‖ · ‖det C•(W u/W u
Y1
,F) via the canonical isomorphism in (1.38). The metric ‖ · ‖M,∇ f

det H•(X,Y1,F)

will be called a Milnor metric.

In the same way, for the complex (C•(K,K1, F), ∂̃) in Sect. 1.1, let ‖ · ‖det C•(K,K1,F) be
the metric on the complex line

det C•(K,K1, F) =
m⊗

j=0

(det C j (K,K1, F))(−1) j
(1.39)

associated with the metric hF (cf. also [4, §1a)]). As in [4, Definiton 1.4], we can define the
Reidemeister metric.

Definition 1.7 The Reidemeister metric ‖ · ‖R,K
det H•(X,Y1,F)

on det H•(X, Y1, F) is the metric
corresponding to ‖ · ‖det C•(K,K1,F) via the canonical isomorphism in (1.38).

Remark 1.8 (i) The Milnor metric does not depend on the choice of Riemannian metric
gT X on X , it depends only on the vector field ∇ f and the Hermitian metric hF on F .

(ii) If hF is unimodular, then as in [4, Remark 1.10], [15, Theorem 9.3], ‖ ·‖M,∇ f
det H•(X,Y1,F)

does not depend on ∇ f and is equal to the Reidemeister metric ‖ · ‖R,K
det H•(X,Y1,F)

which does not depend on the choice of the triangulation K.

2 Comparison of Ray–Singer metrics and Milnor metrics

This Section is organized as follows: we explain first the doubling formula for the analytic
torsion and for the Milnor metric in Sects. 2.1, 2.2, respectively. In Sect. 2.3, we compare
the Ray–Singer and Milnor metrics by applying [5, Theorem 0.2] to the doubled manifold,
thus we establish Theorem 0.1 under the assumptions (2.1) and (2.3).

We use the notation introduced in Sect. 1.

2.1 Doubling formula for the analytic torsion

We assume that gT X has product structure near the boundary ∂X , i.e., there exists a neighbor-
hood Uε of ∂X and an identification ∂X × [0, ε[→ Uε, such that for (y, xm) ∈ ∂X × [0, ε[,

gT X |(y,xm ) = dx2
m ⊕ gT ∂X (y). (2.1)

This condition insures that the manifold X̃ := X ∪Y1 X has the canonical Riemannian metric

gT X̃ = gT X ∪Y1 gT X . The natural involution on X̃ will be denoted by φ, it generates a
Z2-action on X̃ . Let jk : X → X̃ be the natural inclusion into the k-th factor, k = 1, 2, which
identifies X with jk(X). For simplicity, we will write X := j1(X)

We trivialize F on Uε using the parallel transport along the curve [0, 1[� u → (y, uε)
defined by the connection ∇F , then, as ∇F is flat, we have

(F,∇F )|Uε = π∗
ε (F |∂X ,∇F |∂X ), (2.2)
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where πε : ∂X × [0, ε[→ ∂X is the obvious projection. We assume that

hF = π∗
ε hF |∂X on Uε, (2.3)

which is true for flat hF . However, (2.3) does not follow from the product structure (2.1)
alone.

Denote by C
+, C

− the trivial and the nontrivial one dimensional complex Z2-representa-
tion, respectively, and let 1C+ , 1C− be their unit elements.

Let F̃ := F ∪Y1 F be the flat complex vector bundle with Hermitian metric hF̃ on
X̃ := X ∪Y1 X induced by (F, hF ). Consider E p

λ (X̃ , F̃) defined in analogy with (1.19) as a
Z2-space under the Z2-action induced by φ. As in [5, §2a)], we can then define the Z2-equi-
variant analytic torsion T (X̃ , gT X̃ , hF̃ )(g) for g ∈ Z2 by replacing θ F (u) in (1.20) by

θ F̃
g (u) := −Trs

[
gN (D̃2

bd)
−u P⊥̃

H

]
, (2.4)

where D̃2
bd, P⊥̃

H
are the corresponding operator and orthogonal projector on X̃ with the

absolute boundary condition on ∂ X̃ .
Let T (X, gT X , hF ) := T (X,∅, gT X , hF ) be the analytic torsion of F (with the absolute

boundary condition on ∂X ).

Proposition 2.1 (Doubling formula for the analytic torsion). For λ ∈ R, we have a Z2-equi-
variant isometry

φ̃ : E p
λ (X̃ , F̃) −→ E p

λ (X, F)⊗ C
+ ⊕ E p

λ (X, Y1, F)⊗ C
−,

φ̃(σ ) =
√

2

2

(
σ + φ∗σ

) |X ⊗ 1C+ +
√

2

2

(
σ − φ∗σ

) |X ⊗ 1C− .
(2.5)

In particular, with χ the nontrivial character of Z2, we have for g ∈ Z2,

log T (X̃ , gT X̃ , hF̃ )(g) = log T (X, gT X , hF )+ χ(g) log T (X, Y1, gT X , hF ). (2.6)

Proof It is easy to see that φ̃ is well defined and injective from (1.12). To prove the surjec-
tivity, we need to show that for ω ∈ E p

λ (X, F), ω̃ = ω on X , and ω̃ = φ∗ω on φ(X) is a
smooth form on X̃ with coefficients in F̃ , and thus ω̃ ∈ E p

λ (X̃ , F̃). If hF is flat, this result
was proved in [12, Proposition 1.27], the same proof works in the general case. ��
2.2 Doubling formula for the Milnor metric

Let f be a Morse function on X which is induced by a Z2-equivariant Morse function f on
X = X ∪∂X X , as in the proof of Lemma 1.5, such that f induces a Morse function on X̃
with critical set B̃ = {x ∈ X̃; d f (x) = 0}. Let W̃ u(x) be the unstable set of x ∈ B̃ ⊂ X̃ . We
also have a Z2-equivariant isomorphism of complexes

γ : C•(W u, F)⊗ C
+ ⊕ C•(W u/W u

Y1
, F)⊗ C

− → C•(W̃ u, F̃), (2.7)

given by

γ (a∗ ⊗ 1C+ ⊕ b∗ ⊗ 1C−) =
√

2

2

(
( j−1

1 )∗a∗ + ( j−1
2 )∗a∗)+

√
2

2

(
( j−1

1 )∗b∗ − ( j−1
2 )∗b∗),

(2.8)

which induces a Z2-isomorphism

γ : H•(X, F)⊗ C
+ ⊕ H•(X, Y1, F)⊗ C

− −→ H•(X̃ , F̃). (2.9)
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Note that as complex vector spaces, we have

C j (W u, F) =
⊕

x∈B, ind(x)= j

[W u(x)]∗ ⊗ Fx ,

C j (W u/W u
Y1
, F) =

⊕

x∈B\Y1, ind(x)= j

[W u(x)]∗ ⊗ Fx .
(2.10)

By (1.34), (2.8), γ is an isometry from C j (W u/W u
Y1
, F) ⊗ C

+ ⊕ C j (W u/W u
Y1
, F) ⊗ C

−

into C•(W̃ u, F̃) such that for a∗ ∈ [W u(x)]∗ ⊗ Fx with x ∈ Y1, we have

γ (a∗ ⊗ 1C+) = √
2a∗. (2.11)

Thus the linear map γ in (2.8) is not an isometry.
Let C•(W̃ u, F̃)± and H•(X̃ , F̃)± be the ±1-eigenspaces of the Z2-action induced by

φ on C•(W̃ u, F̃) and H•(X̃ , F̃); then H•(X̃ , F̃)± is the cohomology of the complex
(C•(W̃ u, F̃)±, ∂̃). Following [5, (1.10)], we define

det
(
H•(X̃ , F̃),Z2

) = det
(
H•(X̃ , F̃)+

)⊗ C
+ ⊕ det

(
H•(X̃ , F̃)−

)⊗ C
−. (2.12)

Let ‖ · ‖det C•(W̃ u ,F̃)± be the metric on det H•(X̃ , F̃)± defined as in Definition 1.6. For

μ = (μ1, μ2) ∈ det(H•(X̃ , F̃),Z2), g ∈ Z2, and χ the nontrivial character of Z2, we
introduce the equivariant Milnor metric by (cf. Definition 1.6 and [5, Definition 1.1])

log(‖μ‖M,∇ f
det(H•(X̃ ,F̃),Z2)

)(g) = log ‖μ1‖det C•(W̃ u ,F̃)+ + χ(g) log ‖μ2‖det C•(W̃ u ,F̃)− . (2.13)

Now φ̃, γ in (2.5), (2.9) induce isomorphisms

φ̃1, γ
−1
1 : H•(X̃ , F̃)+ → H•(X, F),

φ̃2, γ
−1
2 : H•(X̃ , F̃)− → H•(X, Y1, F).

(2.14)

From Definition 1.6, (2.11), (2.13) and (2.14), we get forμ = (μ1, μ2) ∈ det(H•(X̃ , F̃),Z2),
g ∈ Z2,

log
(
‖μ‖M,∇ f

det(H•(X̃ ,F̃),Z2)

)
(g)

= 1

2
log(2)

∑

x∈B∩Y1

(−1)ind(x)rk(F)

+ log ‖γ−1
1 μ1‖M,∇ f

det H•(X,F) + χ(g) log ‖γ−1
2 μ2‖M,∇ f

det H•(X,Y1,F)
. (2.15)

2.3 Comparison of Ray–Singer metrics and Milnor metrics

We use the notation explained in the Sect. 0. Let χ(∂X), χ(Y1), and χ(V1) be the Euler
characteristics of ∂X , Y1, and V1, respectively, and define by

χ(Y1, F) :=
∑

j

(−1) j dim H j (Y1, F), (2.16)

the Euler characteristic of Y1 with coefficients in F . Then from (1.5) (cf. also [6, Theorem
3.2]), we deduce that

χ(Y1, F) = rk(F)χ(Y1) = rk(F)
∑

x∈B∩Y1

(−1)ind(x). (2.17)
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As an application of [5, Theorem 0.2], we will establish the following formula which is a
special case of Theorem 0.1.

Theorem 2.2 If gT X and hF have product structure near the boundary ∂X, [i.e., (2.1), (2.3)
are verified], we have the identity

log

⎛

⎝

(‖ · ‖RS
det H•(X,Y1,F)

‖ · ‖M,∇ f
det H•(X,Y1,F)

)2
⎞

⎠ = −
∫

X

θ(F, hF )(∇ f )∗ψ(T X,∇T X )

+ 1

2

∫

Y1

θ(F, hF )(∇ f )∗ψ(T Y1,∇T Y1)

− 1

2

∫

V1

θ(F, hF )(∇ f )∗ψ(T V1,∇T V1)

− 1

2
rk(F)χ(∂X) log 2.

(2.18)

Proof Assume first that f is a Morse function on X induced by a Z2-equivariant Morse
function f on X = X ∪∂X X as in the proof of Lemma 1.5.

By Proposition 2.1 for λ = 0, we have a natural isometry of Z2-vector spaces

φ̃ : H (X̃ , F̃) −→ H (X, F)⊗ C
+ ⊕ H (X, Y1, F)⊗ C

−,

φ̃(σ ) =
√

2

2
· (σ + φ∗σ

) |X +
√

2

2
· (σ − φ∗σ

) |X .
(2.19)

By Theorem 1.1 (d), we can canonically identify the three terms in (2.19) with the corre-
sponding elements in the cohomology groups H•(X̃ , F̃), H•(X, F) and H•(X, Y1, F).

We denote by C•(W̃ u/W u
Y1
, F̃∗) =⊕x∈B̃\Y1

[W u(x)] ⊗ F̃∗
x . We use the notation P∞ for

the de Rham map (cf. [4, Definition 2.8, Theorem 2.9]) in the identification (1.18) which
commutes with φ∗. Thus by (2.9), (2.14) and (2.19), for σ ∈ H•(X̃ , F̃),

(γ ◦ P∞ ◦ φ̃1 ◦ P−1∞ )(σ )|C•(W u
Y1
,F∗) =

√
2

2
γ (σ + φ∗σ)|C•(W u

Y1
,F∗) = 2σ |C•(W u

Y1
,F∗),

(γ ◦ P∞ ◦ φ̃ ◦ P−1∞ )(σ )|C•(W̃ u/W u
Y1
,F̃∗) = σ |C•(W̃ u/W u

Y1
,F̃∗). (2.20)

Set

τ± = γ ◦ P∞ ◦ φ̃ ◦ P−1∞ : H•(X̃ , F̃)± → H•(X̃ , F̃)±. (2.21)

By (2.20), we get
m∏

j=0

(
det τ+|H j (X̃ ,F̃)+

)(−1) j

= 2χ(Y1)rk(F),

m∏

j=0

(
det τ−|H j (X̃ ,F̃)−

)(−1) j

= 1. (2.22)

Let | · |det(H•(X̃ ,F̃)±) be the L2-metric on det
(
H•(X̃ , F̃)±

)
. Then according to [5, Definition

2.3], for μ = (μ1, μ2) ∈ det(H•(X̃ , F̃),Z2) (as in (2.12)), g ∈ Z2, the equivariant Ray–
Singer metric is defined by

log
(
‖μ‖RS

det(H•(X̃ ,F̃),Z2)

)
(g) = log |μ1|det(H•(X̃ ,F̃)+)

+χ(g) log |μ2|det(H•(X̃ ,F̃)−) + log T
(

X̃ , gT X̃ , hF̃
)
(g).

(2.23)
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By (2.6), (2.19) and (2.23), for μ = (μ1, μ2) ∈ det(H•(X̃ , F̃),Z2), g ∈ Z2,

log
(
‖μ‖RS

det(H•(X̃ ,F̃),Z2)

)
(g) = log ‖φ̃1μ1‖RS

det H•(X,F)

+χ(g) log ‖φ̃2μ2‖RS
det H•(X,Y1,F). (2.24)

By (2.15), (2.17), (2.20), (2.22) and (2.24), for g ∈ Z2 and χ the nontrivial character,

log

⎛

⎝
‖ · ‖RS

det(H•(X̃ ,F̃),Z2)

‖ · ‖M,∇ f
det(H•(X̃ ,F̃),Z2)

⎞

⎠

2

(g) = χ(Y1)rk(F) log(2)+ log

(‖ · ‖RS
det H•(X,F)

‖ · ‖M,∇ f
det H•(X,F)

)2

+ χ(g) log

(‖ · ‖RS
det H•(X,Y1,F)

‖ · ‖M,∇ f
det H•(X,Y1,F)

)2

.

(2.25)

As in (0.7), we denote byψ
(

T X̃ ,∇T X̃
)

,ψ(T ∂X,∇T ∂X ) the Mathai–Quillen current on

T X̃ , T ∂X , respectively.
Assume first ∂X = Y1. By [4, Theorem 0.2] and [5, Theorem 0.2], we get

log

⎛

⎝
‖ · ‖RS

det H•(X̃ ,F̃)

‖ · ‖M,∇ f
det H•(X̃ ,F̃)

⎞

⎠

2

= −
∫

X̃

θ
(

F̃, hF̃
)
(∇ f )∗ψ

(
T X̃ ,∇T X̃

)
,

log

⎛

⎝
‖ · ‖RS

det(H•(X̃ ,F̃),Z2)

‖ · ‖M,∇ f
det(H•(X̃ ,F̃),Z2)

⎞

⎠

2

(φ) = −
∫

Y1

θ(F, hF )(∇ f )∗ψ(T Y1,∇T Y1)

− 1

4

∑

x∈B∩Y1

Tr[φ|Fx ](−1)ind(x)
[
2
�′

�

(1

2

)
− 2�′(1)

]
.

(2.26)

By [14] (cf. [5, (5.53)]), we know

�′

�

(
1

2

)

− �′(1) = −2 log(2). (2.27)

As φ acts as Id on Fx for x ∈ Y1, the last term in (2.26) is rk(F)χ(Y1) log(2).
By (2.25) and (2.26), we get (2.18), and

log

(‖ · ‖RS
det H•(X,F)

‖ · ‖M,∇ f
det H•(X,F)

)2

=−
∫

X

θ(F, hF )(∇ f )∗ψ(T X,∇T X )

− 1

2

∫

∂X

θ(F, hF )(∇ f )∗ψ(T ∂X,∇T ∂X )− 1

2
rk(F)χ(∂X) log(2).

(2.28)

Finally, we treat the general case, i.e., ∂X = Y1 ∪ V1. As ∂ X̃ = V1 ∪ V1, by (2.28), we
get

log

⎛

⎝
‖ · ‖RS

det H•(X̃ ,F̃)

‖ · ‖M,∇ f
det H•(X̃ ,F̃)

⎞

⎠

2

= −
∫

X̃

θ
(

F̃, hF̃
)
(∇ f )∗ψ

(
T X̃ ,∇T X̃

)

−
∫

V1

θ(F, hF )(∇ f )∗ψ(T V1,∇T V1)− rk(F)χ(V1) log(2).

(2.29)
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1102 J. Brüning, X. Ma

By (2.25) for g = 1, (2.28), and (2.29), we get (2.18).
We established until now Theorem 2.2 for a special Morse function f on X induced by

a Z2-equivariant Morse function f on X̃ . By combining this with the argument in [4, §16],
we know that Theorem 2.2 holds for any f verifying Lemma 1.5. ��

3 Gluing formula for analytic torsion

This Section is organized as follows: in Sect. 3.1, we review the relative Euler class for man-
ifolds with boundary as introduced in [6, §1]. In Sect. 3.2, we establish the anomaly formula
for the analytic torsion for manifolds with boundary, Theorem 3.4. We explain that Theorem
3.4 is also a consequence of Theorem 2.2 if two couples of metrics (gT X

0 , hF
0 ) and (gT X

1 , hF
1 )

on T X and F are product metrics near the boundary. In Sect. 3.3, we establish Theorem 0.1.
In Sects. 3.4 and 3.5, we prove Theorem 0.3, and in Sect. 3.6, we prove Theorem 0.4.

3.1 The Euler class for manifolds with boundary

We use the same terminology as in Sect. 1.2, and we use freely the notation introduced in
[6, §1].

For Z2-graded algebras A,B with identity, we introduce the Z2-graded tensor product
A⊗̂B and define A := A⊗̂I , and B̂ := I ⊗̂B, and we write ∧ := ⊗̂ such that A⊗̂B = A∧ B̂;
the canonical isomorphism B → B̂ will be written as ω → ω̂ = 1⊗̂ω. Let E and V be
finite dimensional real vector spaces of dimension n and l, respectively. Assume that E is
Euclidean and oriented, with oriented orthonormal basis { fi }n

i=1 and dual basis { f i }n
i=1 with

respect to the Euclidean metric hE , and denote by�E∗ the exterior algebra of E∗. Then the
Berezin integral we use is the linear map

B∫

: �V ∗ ∧ �̂E∗ → �V ∗, α ∧ β̂ �→ cB β( f1, · · · , fn)α, (3.1)

where the normalizing constant is given by cB := (−1)n(n+1)/2π−n/2.More generally, for any
Euclidean vector space E with orientation line o(E), the Berezin integral maps�V ∗ ∧ �̂E∗
into �V ∗ ⊗ o(E).

Let X be a m-dimensional compact manifold with boundary ∂X := Y = Y1 ∪ V1. Let
j : Y ↪→ X be the natural injection. Let gT X be a metric on T X and denote by gT Y the metric
on T Y induced by gT X . Let ∇T X and ∇T Y be the Levi-Civita connection on (T X, gT X ) and
(T Y, gT Y ), respectively.

We only consider orthonormal frames {ei }m
i=1 of T X with the property that near the bound-

ary Y , em =: en is the inward pointing unit normal at any boundary point. We will use greek
indices to specify the induced frame of T Y , such that {eα}m−1

α=1 denotes a local orthonormal
frame for T Y .

Thus ifω is a smooth section of�(T ∗ X)we identifyωwith the sectionω⊗̂1 of�(T ∗ X)⊗̂
�̂(T ∗ X), and ω̂ will denote the section 1⊗̂ ω̂ of�(T ∗ X)⊗̂�̂(T ∗ X) as before. We will apply
the Berezin integral from (3.1) to �(T ∗ X)⊗̂�̂(T ∗ X) and �(T ∗Y )⊗̂�̂(T ∗Y ), and, for con-

venience, we will denote this operation by
BX∫

and
BY∫

, respectively, cf. [6, (1.14)].
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On the gluing formula for the analytic torsion 1103

Let {ei }m
i=1 be an orthonormal frame of (T X, gT X ) and let {ei } be the corresponding dual

frame of T ∗ X . Set

ṘT X := 1

2

∑

1�i, j�m

〈
ei , RT X e j

〉
êi ∧ ê j ∈ �2(T ∗ X)⊗̂ ̂�2(T ∗ X). (3.2)

We define

Ṡ := 1

2
j∗∇T X êm = 1

2

m−1∑

β=1

〈
(j∗∇T X )en, eβ

〉
êβ ∈ T ∗Y ⊗̂ ̂�1(T ∗Y ),

ṘT X |Y := 1

2

∑

1�γ,δ�m−1

〈
eγ , j

∗ RT X eδ
〉

êγ ∧ êδ ∈ �2(T ∗Y )⊗̂ ̂�2(T ∗Y ),

ṘT Y := 1

2

∑

1�γ,δ�m−1

〈
eγ , RT Y eδ

〉
êγ ∧ êδ ∈ �2(T ∗Y )⊗̂ ̂�2(T ∗Y ).

(3.3)

By [6, (1.16)], we have

ṘT Y = ṘT X |Y − 2Ṡ2. (3.4)

The Chern–Weil forms

e(T X,∇T X ) :=
BX∫

exp

(

− ṘT X

2

)

, e(T Y,∇T Y ) :=
BY∫

exp
(

− ṘT Y

2

)
, (3.5)

are closed and e(T X,∇T X ) is an o(T X)-valued m-form on X which represents the Euler
class of T X . On Y , we further introduce

eb(Y,∇T X ) := (−1)m−1

BY∫

exp

(

−1

2
(ṘT X |Y )

) ∞∑

k=0

Ṡk

2�( k
2 + 1)

,

B(∇T X ) := −
1∫

0

du

u

BY∫

exp

(

−1

2
ṘT Y − u2 Ṡ2

) ∞∑

k=1

(uṠ)k

2�( k
2 + 1)

.

(3.6)

Then eb(Y,∇T X ), B(∇T X ) are (m −1)-forms on Y with values in the orientation line bundle
o(T Y ). If dim X = m is odd, then by (3.4) and (3.6),

eb(Y,∇T X ) = 1

2
e(T Y,∇T Y ), e(T X,∇T X ) = 0,

B(∇T X ) =
BY∫

exp

(

−1

2
ṘT Y
) ∞∑

k=1

(−Ṡ2)k

4k�(k + 1)
.

(3.7)

Let�(X, o(T X)),�(Y, o(T X)) be the o(T X)-valued C∞ forms on X, Y . The algebraic
mapping cone of j∗ : �(X, o(T X))→ �(Y, o(T X)) is defined as the following object: we
put

�p(X, Y, o(T X)) = �p(X, o(T X))⊕�p−1(Y, o(T X)), (3.8)

and define the differential by

d(σ1, σ2) = (d Xσ1, j
∗σ1 − dYσ2); (3.9)
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1104 J. Brüning, X. Ma

then the complex (�(X, Y, o(T X)), d) calculates the relative cohomology H•(X, Y, o(T X)).
For (σ1, σ2) ∈ �(X, Y, o(T X)), σ3 ∈ �(X), we define a nonsingular pairing

∫

(X,Y )

(σ1, σ2) ∧ σ3 :=
∫

X

σ1 ∧ σ3 −
∫

Y

σ2 ∧ j∗σ3; (3.10)

this induces the Poincaré duality H•(X, Y, o(T X))× H•(X,R) → R.
We define the relative Euler form of T X associated with ∇T X

E(T X,∇T X ) := (e(T X,∇T X ), eb(Y,∇T X )) ∈ �m(X, Y, o(T X)). (3.11)

The following result was established in [6, Theorem 1.9].

Theorem 3.1 (1) E(T X,∇T X ) is closed in the complex (�(X, Y, o(T X)), d) and, mod-
ulo exact forms, it does not depend on the choice of gT X , i.e., the cohomology class
E(T X) = [E(T X,∇T X )] ∈ Hm(X, Y, o(T X)) does not depend on gT X .

(2) For two metrics gT X
0 , gT X

1 on T X, there exists a canonically defined secondary relative
Euler class

Ẽ(T X,∇T X
0 ,∇T X

1 ) ∈ �m−1(X, Y, o(T X))/d�m−2(X, Y, o(T X))

of T X such that

d Ẽ(T X,∇T X
0 ,∇T X

1 ) = E(T X,∇T X
1 )− E(T X,∇T X

0 ). (3.12)

In particular, for three metrics gT X
0 , gT X

1 , gT X
2 on T X, we have

Ẽ(T X,∇T X
0 ,∇T X

2 ) = Ẽ(T X,∇T X
0 ,∇T X

1 )+ Ẽ(T X,∇T X
1 ,∇T X

2 ). (3.13)

If Y = ∅, then Ẽ is the Chern–Simons form associated with the Euler class of T X , as defined
in [4, (4.53)].

We will use the subscripts 0 and 1 to distinguish various objects associated with these
metrics. For example, ẽ(T Y,∇T Y

0 ,∇T Y
1 ) denotes the Chern–Simons class of smooth (m−2)-

forms on Y with values in o(T Y ), which is defined modulo exact forms and satisfies

d ẽ(T Y,∇T Y
0 ,∇T Y

1 ) = e(T Y,∇T Y
1 )− e(T Y,∇T Y

0 ). (3.14)

If dim X is odd, then we derive from (3.7), [6, (1.47)]:

Ẽ(T X,∇T X
0 ,∇T X

1 ) =
(

0,− 1
2 ẽ(T Y,∇T Y

0 ,∇T Y
1 )
)
. (3.15)

3.2 Anomaly formula

Recall that X is a m-dimensional compact manifold with boundary ∂X := Y = Y1 ∪ V1 with
operator D2

bd as defined in (1.13). The Euler number of X relative to Y1 is defined by

χ(X, Y1) =
∑

j

(−1) j dim H j (X, Y1,C). (3.16)

Note that by the Gauss–Bonnet–Chern theorem, if m is even then

χ(X, Y1) =
∫

(X,Y )

E(T X,∇T X ), (3.17)
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and if m is odd, then

χ(X, Y1) = 1

2

∫

V1

e(T Y,∇T Y )− 1

2

∫

Y1

e(T Y,∇T Y ). (3.18)

The following result insuring that θ F (u) is holomorphic at 0 [cf. (1.20)], extends [4,
Theorem 7.10] where Y = ∅, and [6, Theorem 4.2] where Y1 = ∅.

Theorem 3.2 When t → 0, we have for any k ∈ N,

Trs
[
N exp(−t2 D2

bd)
] =

k∑

j=−1

c j t
j + O(tk+1), (3.19)

where

c−1 =1

2
rk(F)
∫

X

BX∫ m∑

i=0

ei ∧ êi exp

(

−1

2
ṘT X
)

+ 1

2
rk(F)
( ∫

V1

+(−1)m+1
∫

Y1

) BY∫ m−1∑

α=1

eα ∧ êα

·
∞∑

k=0

Ṡk

2�( k
2 + 1)

exp

(

−1

2
(ṘT X |Y )

)

,

c0 =m

2
rk(F)χ(X, Y1).

(3.20)

Let ∗F : �(T ∗ X)⊗ F → �(T ∗ X)⊗ F∗ ⊗ o(T X) be the Hodge operator defined by

(σ ∧ ∗Fσ ′)F := 〈σ, σ ′〉
�(T ∗ X)⊗F dvX . (3.21)

Let ∗ be the usual Hodge operator on �(T ∗ X) associated with gT X .
Let (gT X

s , hF
s )s∈R be a smooth family of metrics on T X and F . We add the subscript s

to denote the objects we considered which attached to (gT X
s , hF

s ). For example, ‖ · ‖det F,s is
the metric on the line bundle det F induced by hF

s .
The following result is an extension of [4, Theorem 4.14], where the case ∂X = Y = ∅

was treated, and of [6, Theorem 4.5] dealing with the case Y1 = ∅.

Theorem 3.3 As t → 0, for any k ∈ N, we have the asymptotic estimate

Trs

[(

∗−1
s
∂∗s

∂s
+ (hF

s )
−1 ∂hF

s

∂s

)

e−t D2
s,bd

]

=
k∑

j=−m

M j,s t j/2 + O(t (k+1)/2), (3.22)

with

M0,s = ∂

∂s
log
((

‖ · ‖RS
det H•(X,Y1,F),s

)2)
. (3.23)

Proof By [6, (3.35)], as in [6, (4.10)], we have

w(em)d Fσ |Y1 = 0 if w(em)σ |Y1 = 0. (3.24)

With (3.24), the argument given in the proof of [6, §4] and [13, §3.4] works here as well.
Thus we get Theorem 3.3. ��
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1106 J. Brüning, X. Ma

Theorem 3.4 Let (gT X
0 , hF

0 ) and (gT X
1 , hF

1 ) be two couples of metrics on T X and F. If m
is even, then

log

(‖ · ‖RS
det H•(X,Y1,F),1

‖ · ‖RS
det H•(X,Y1,F),0

)2

=
∫

(X,Y )

log

(‖ · ‖det F,1

‖ · ‖det F,0

)2

E(T X,∇T X
0 )

+
∫

(X,Y )

Ẽ(T X,∇T X
0 ,∇T X

1 )θ(F, hF
1 )

+ rk(F)

⎡

⎢
⎣

⎛

⎜
⎝

∫

V1

−
∫

Y1

⎞

⎟
⎠ B(∇T X

1 )−
⎛

⎜
⎝

∫

V1

−
∫

Y1

⎞

⎟
⎠ B(∇T X

0 )

⎤

⎥
⎦ .

(3.25)

If m is odd, then

log

(‖ · ‖RS
det H•(X,Y1,F),1

‖ · ‖RS
det H•(X,Y1,F),0

)2

= 1

2

⎛

⎜
⎝

∫

V1

−
∫

Y1

⎞

⎟
⎠ log

(‖ · ‖det F,1

‖ · ‖det F,0

)2

e(T Y,∇T Y
0 )

+1

2

⎛

⎜
⎝

∫

V1

−
∫

Y1

⎞

⎟
⎠ ẽ(T Y,∇T Y

0 ,∇T Y
1 )θ(F, hF

1 )

+ rk(F)

⎡

⎣
∫

Y

B(∇T X
1 )−
∫

Y

B(∇T X
0 )

⎤

⎦ . (3.26)

Proof of Theorems 3.2 and 3.4 Clearly, the contribution from the interior of X is the same
as in the case of absolute boundary conditions. For the boundary contribution, we can again
localize near the boundary. Thus we get directly the local contribution near V1 from [6, §3-
§5]. To get the contribution near Y1, notice that locally the Hodge ∗ operator interchanges
relative and absolute boundary conditions; and it interchanges the Z2-grading on�(T ∗ X) if
m is odd and preserves the Z2-grading on �(T ∗ X) if m is even.

We explain first how to get the contribution near Y1 by using the Hodge ∗ operator. We
denote D2

b̃d
the operator D2 associated with the flat vector bundle F∗ ⊗ o(T X) with the

absolute boundary condition on Y1 and the relative boundary condition on V1. Then by
[6, (3.3)],

D2
b̃d

= ∗F D2
bd(∗F )−1. (3.27)

Note that if hF is not flat, D2 = ∗D2∗−1 does not hold, cf. [4, §4g].
As the operator ∗F has parity (−1)m , and ∗F N (∗F )−1 = m − N , we get from (3.27) for

x ∈ X near Y1,

Trs
[
N exp
(−t D2

bd

)
(x, x)
] = (−1)m Trs

[
∗F N exp

(−t D2
bd

)
(x, x)(∗F )−1

]

= (−1)m Trs

[
∗F N (∗F )−1 exp

(
−t D2

b̃d

)
(x, x)
]

= (−1)m Trs

[
(m − N ) exp

(
−t D2

b̃d

)
(x, x)
]
, (3.28)
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and similarly

Trs
[
exp
(−t D2

bd

)
(x, x)
] = (−1)m Trs

[
∗F exp
(−t D2

bd

)
(x, x)(∗F )−1

]

= (−1)m Trs

[
exp
(
−t D2

b̃d

)
(x, x)
]
. (3.29)

In the same way, for Qs := (∗F
s )

−1 ∂∗F
s
∂s , with (∗F

s )
2 = 1 we get

∗F
s Qs = −Qs ∗F

s . (3.30)

By (3.27) and (3.30), for x ∈ X near Y1,

Trs
[
Qs exp
(−t D2

bd

)
(x, x)
] = (−1)m Trs

[
∗F

s Qs exp
(−t D2

bd

)
(x, x)(∗F

s )
−1
]

= (−1)m Trs

[
∗F

s Qs(∗F
s )

−1 exp
(
−t D2

b̃d

)
(x, x)
]

= (−1)m+1 Trs

[
Qs exp
(
−t D2

b̃d

)
(x, x)
]
. (3.31)

From (3.29), we get the factor (−1)m in (3.17) and (3.18) for the contribution from Y1. From
(3.28), (3.31), we get the factor (−1)m+1 in c−1 of (3.20) and in B(∇T X ) of Theorem 3.4
for the contribution from Y1.

In the rest, we prefer to write down the boundary condition corresponding to (1.12) using
freely the notation in [6, §3.4, §3.5]. Letω(F, hF ) be the 1-form on X with values in End(F)
defined by ω(F, hF ) := (hF )−1(∇F hF ). As ∇T X is torsion free (cf. [6, (4.8)]),

(d F )∗ = −i(e j )∇T X⊗F
e j

− i(e j )ω(F, hF )(e j ). (3.32)

For ε small enough, we identify ∂X ×[0, ε)with a neighborhood Uε of ∂X in X by using
the exponential map expy(uen) for (y, u) ∈ ∂X × [0, ε). For x = (y, xm) ∈ Uε , let 1T Xx ,
2T Xx be obtained by parallel transport of TyY , ny (cf. Sect. 1.2) with respect to the connec-

tion ∇T X along the geodesic [0, 1] � u �→ (y, uxm). Let ∇ j T X ( j = 1, 2) be the connection
on j T X induced by projection from ∇T X . Let sp∇T X := ∇1T X ⊕ ∇2T X be the direct sum
connection on T X = 1T X ⊕ 2T X with curvature sp RT X (where “sp” refers to “split”), and
set

A := ∇T X − sp∇T X
. (3.33)

Then A is a 1-form on Uε0 taking values in the skew-adjoint endomorphisms of T X which
exchange 1T X and 2T X . Let {eα} be an orthonormal basis of 1T X , set

A�(T
∗Y )(em) := −

∑

1≤α,β≤m−1

〈
em, A(eα)eβ

〉
w(eα)i(eβ). (3.34)

We denote by ∇T X⊗F (resp. sp∇T X⊗F ) the connection on�(T ∗ X)⊗ F induced by ∇T X

and ∇F (resp. sp∇T X and ∇F ).
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1108 J. Brüning, X. Ma

By (3.33), ∇T X⊗F
e j

= sp∇T X⊗F
e j

+∑m
i,k=1

〈
ek, A(e j )ei

〉
w(ek)i(ei ) and A(em) = 0 (cf.

[6, (1.9)]), we get on ∂X as in [6, (3.36)]

w(em)(d F )∗ = −
m−1∑

α=1

w(em)i(eα)
(

sp∇T X⊗F
eα + ω(F, hF )(eα)

)

−w(em)i(em)

{

sp∇T X⊗F
em

− A�(T
∗Y )(em)−

m−1∑

α=1

〈A(eα)eα, em〉

+ω(F, hF )(em)

}

. (3.35)

Thus the boundary condition (1.12) near Y1 is equivalent to the boundary condition
{
w(em)ω|Y1 = 0,

i(em)
(

sp∇T X⊗F
em

− A�(T
∗Y )(em)−∑m−1

α=1 〈A(eα)eα, em〉+ω(F, hF )(em)
)
ω|Y1 = 0.

(3.36)

Let B�(T
∗Y ) be the 1-form defined by

B�(T
∗Y )(em) := −A�(T

∗Y )(em)−
m−1∑

α=1

〈A(eα)eα, em〉 + ω(F, hF )(em),

B�(T
∗Y )(eα) := 0.

(3.37)

Instead of using the connection sp∇T X⊗F,A as in [6, (3.38)], we use the connection

sp∇T X⊗F,A
1 :=sp ∇T X⊗F + B�(T

∗Y ) (3.38)

in trivializing near the boundary, as in [6, §3.5]. Then for y0 ∈ Y1, we get the corresponding
model problem on R

m+ := R
m−1 × R+ (cf. [6, Theorem 3.8]) in the form

{
∂

∂t
−
( ∂

∂zm
+ Ṡ(y0)

)2 −
m−1∑

α=1

∂2

∂z2
α

+ 1

2
(ṘT X |Y )y0

}

ω = 0, (3.39)

with boundary condition
{
w(em)ω|zm=0 = 0,
∇em i(em)ω|zm=0 = 0.

(3.40)

To conclude the final computation, we need to use the Sommerfeld formula which is the
explicit solution of our model problem (3.39) and (3.40) (cf. [6, Prop. 3.21]). As in [6,
(3.132)], for y0 ∈ Y1, let

Q(t, z, w) =: Q1w(e
m)+ Q2 i(em)+ Q3w(e

m)i(em)+ Q4 i(em)w(e
m), (3.41)

with Qi ∈ (�(T ∗Y )⊗̂�̂(T ∗Y ) ⊗ End(F))y0 , z = (z′, zm), w = (w′, wm) ∈ R
m+, t > 0,

be the fundamental solution of the following problem with respect to the Euclidean volume
form dvTy0 X (w) on (Ty0 X, gTy0 X ),

⎧
⎨

⎩

w(em)ω|zm=0 = 0,
i(em)[∇em − Ṡ(y0)]ω|zm=0 = 0,(
∂
∂t +
Ty0 X )ω = 0.

(3.42)
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For z′, w′ ∈ R
m−1, set

K (u, z′, w′) = (4πu)− m−1
2 exp
(

− |z′−w′|2
4u

)
, (3.43)

and define FDir , F−Ṡ as in [6, (3.121), (3.122)]. By separation of variables as in [6, (3.135)],
we get

Q3(t, z, w) = K (t, z′, w′)F−Ṡ(t, zm, wm),

Q4(t, z, w) = K (t, z′, w′)FDir (t, zm, wm).
(3.44)

Now for y0 ∈ Y1, the analogue of [6, (3.128), (3.133)] holds, thus we get the contribution of
Y1 in (3.17) and (3.18) with a factor (−1)m . In this way, we get a heat kernel proof of (3.17)
and (3.18).

From [6, (4.23a), (4.34)] and (3.44), we get as in [6, (4.35)], the analogue of [6, Lemma
4.7], i.e., we have for y0 ∈ Y1

lim
t→0

dvY (y)It (y0) = −2

s
rk(F)

BY∫

exp

(

−1

2
(ṘT X

s |Y )y0

) ∞∑

k=1

(−Ṡs)
k

4�( k
2 + 1)

, (3.45)

(cf. [6, (4.27)] for the notation). Thus we get the term B(∇T X ) on Y1 with a factor (−1)m+1

in Theorem 3.4.
To establish the corresponding formula of [6, §5], we still define the operators Bs , D2

1 ,

L
(0)
t acting on the smooth sections of F := �(C(ds ⊕ ds))⊗̂�(T ∗ X)⊗ F on X as in [6,

(5.3)]. We denote by L
(0)
t,bd the operator associated with L

(0)
t and the following boundary

condition for σ ∈ C∞(X,F),

i(en)σ = i(en)

(

d Fσ − 1

2
√

t
ds ∧ ∗−1

s
∂∗s

∂s
σ

)

= 0 on V1,

w(em)σ = w(em)

(

d Fσ + 1

2
√

t
ds ∧ ∗−1

s
∂∗s

∂s
σ

)

= 0 on Y1.

(3.46)

Then we have the analogue of [6, Theorem 5.2],

∂

∂t

{

tTrs

[

∗−1
s
∂∗s

∂s
e−t2 D2

bd

]}

= Trs[e−L
(0)
t,bd ]dsds . (3.47)

Next, from the proof of [18, Lemma 5.12, p.192–193] we have

i(en)d
F
x

t∫

0

dt1

∫

y∈V1

e−(t−t1)D2
bd (x, y)i(en)σ (y)dvY (y)

x→x0∈V1−→ −i(en)σ (x0),

w(em)d F∗
x

t∫

0

dt1

∫

y∈Y1

e−(t−t1)D2
bd (x, y)w(em)σ (y)dvY (y)

x→x0∈Y1−→ w(em)σ (x0). (3.48)

Now for y0 ∈ Y1, we will get the limit operator L(3)0 by replacing −Ṡ by Ṡ in L(3)0 of
[6, Theorem 5.5], but with the boundary condition (3.40). In this way, we find again the
factor (−1)m for the relative Euler classes and the factor (−1)m+1 for B(∇T X ) from the
boundary contributions of Y1. ��
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1110 J. Brüning, X. Ma

Instead of deriving Theorem 3.4 from the same arguments as used for Theorem 3.2, we
will follow a different route, namely to use Theorem 2.2. Thus we will carry out two steps:
first, we deform the given metrics (gT X

0 , hF
0 ) and (gT X

1 , hF
1 ) to product metrics, then we

compare the Milnor metrics depending only on hF
0 , hF

1 , and we evaluate the left hand side
of Theorem 3.4 by Theorem 2.2.

Step 1 Given a pair of metrics (gT X , hF ), by using the exponential map starting from the
boundary along the normal direction, there exist a neighborhood Uε of Y , and an identification
∂X ×[0, ε[→ Uε, such that for (y, xm) ∈ Y ×[0, ε[, (0.8) holds. We trivialize F on Uε using
the parallel transport with respect to the connection ∇F along the curve [0, 1[� u → (y, uε).
Then on Uε we have (2.2), but (2.3) need not hold. Thus we fix the metric gT X , and deform
the metric hF to a Hermitian metric hF

0 such that (2.3) is verified for hF
0 . Theorem 3.4 for

the metric pairs (gT X , hF ) and (gT X , hF
0 ) follows as in [6, (4.22b)].

It remains to deform the metric gT X to the metric g̃T X in (0.9), while fixing the metric
hF

0 above satisfying (2.3). Thus we assume that the families gT X
s , hF

s (s ∈ [0, 1]) featuring
in the above analysis are defined by the equation

gT X
s = sgT X + (1 − s)g̃T X , hF

s = hF
0 . (3.49)

The argument in [6, §4.4] shows Theorem 3.4 for the metrics (gT X , hF
0 ) and (g̃T X , hF

0 ) in
(3.49).

Step 2 From Theorem 3.1 and Step 1, we reduce the proof of Theorem 3.4 to the product case,
i.e., we assume that (gT X

1 , hF
1 ) and (gT X

0 , hF
0 ) verify (2.1) and (2.3) (which need not hold,

however, in the same identification Uε � ∂X × [0, ε[). We apply Theorem 2.2 by choosing
a Morse function f on X induced by a Z2-equivariant Morse function f on X = X ∪∂X X
as in the proof of Lemma 1.5, cf. Section 2.2. Set

h0 = log

(‖ · ‖det F,1

‖ · ‖det F,0

)2

. (3.50)

By (1.32), (1.35) and (3.50),

log

(‖ · ‖M,∇ f
det H•(X,Y1,F),1

‖ · ‖M,∇ f
det H•(X,Y1,F),0

)2

=
∑

x∈B,x /∈Y1

h0(x) (−1)ind(x). (3.51)

Note that by (3.50), dh0 = θ(F, hF
1 ) − θ(F, hF

0 ). Thus from Theorem 2.2, (0.5), (3.50)
and (3.51) we get

log

(‖ · ‖RS
det H•(X,Y1,F),1

‖ · ‖RS
det H•(X,Y1,F),0

)2

= −
∫

X
dh0 (∇ f )∗ψ(T X,∇T X

0 )

−
∫

X
θ(F, hF

1 )(∇ f )∗
(
ψ(T X,∇T X

1 )− ψ(T X,∇T X
0 )
)

−1

2

⎛

⎜
⎝

∫

V1

−
∫

Y1

⎞

⎟
⎠θ(F, hF

1 )(∇ f )∗
(
ψ(T Y,∇T Y

1 )−ψ(T Y,∇T Y
0 )
)
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−1

2

⎛

⎜
⎝

∫

V1

−
∫

Y1

⎞

⎟
⎠ dh0 (∇ f )∗ψ(T Y,∇T Y

0 )

+
∑

x∈B,x /∈Y1

h0(x) (−1)ind(x). (3.52)

We identify each term in (3.52). At first, by [4, (3.34), (6.1)] we know that, as a current on Y ,

dY (∇ f )∗ψ(T Y,∇T Y
0 ) = e(T Y,∇T Y

0 )−
∑

x∈B, x∈Y

(−1)ind(x)δx , (3.53a)

(∇ f )∗
(
ψ(T Y,∇T Y

1 )− ψ(T Y,∇T Y
0 )
)

− ẽ(T Y,∇T Y
0 ,∇T Y

1 ) is exact. (3.53b)

Let gT X
1 , gT X

0 be the Z2-invariant metrics on the double X = X ∪∂X X induced by
gT X

1 , gT X
0 . Let F be the flat vector bundle on X induced by F . We denote by ‖ · ‖det F,i

(i = 0, 1) the Z2-invariant metrics on det F over X induced by ‖ · ‖det F,i .

By (3.50) and the analogue of (3.53a) for (∇ f )∗ψ(T X ,∇T X
0 ), we get

−
∫

X
dh0 (∇ f )∗ψ(T X,∇T X

0 ) = −1

2

∫

X
d log

(‖ · ‖det F,1

‖ · ‖det F,0

)2

(∇ f )∗ψ(T X ,∇T X
0 )

=
∫

X

h0

(
e(T X,∇T X

0 )−
∑

x∈B

(−1)ind(x)δx

+1

2

∑

x∈B∩∂X

(−1)ind(x)δx

)
. (3.54)

We verify first that the total contribution of terms in (3.52) localized in B vanishes in view
of (3.53a) and (3.54). Thus

log

(‖ · ‖RS
det H•(X,Y1,F),1

‖ · ‖RS
det H•(X,Y1,F),0

)2

=
∫

X

h0 e(T X,∇T X
0 )

−
∫

X

θ(F, hF
1 )(∇ f )∗

(
ψ(T X,∇T X

1 )− ψ(T X,∇T X
0 )
)

+1

2

⎛

⎜
⎝

∫

V1

−
∫

Y1

⎞

⎟
⎠
[
h0 e(T Y,∇T Y

0 )+ẽ(T Y,∇T Y
0 ,∇T Y

1 )θ(F, hF
1 )
]
,

(3.55)

so we still need to identify the second term in (3.55).
Let gT X

s (s ∈ [0, 1]) be a family of Z2-invariant metrics connecting gT X
1 , gT X

0 . Then
∫

X

θ(F, hF
1 )(∇ f )∗

(
ψ(T X,∇T X

1 )− ψ(T X,∇T X
0 )
)

= 1

2

∫

X

θ(F, hF
1 )̃e(T X ,∇T X

s ) =
∫

X

θ(F, hF
1 )̃e(T X,∇T X

s ). (3.56)

123



1112 J. Brüning, X. Ma

From this we see that the first two terms in (3.55) vanish if m is odd and the last two terms
vanish if m is even.

As the metric gT X
s is Z2-invariant under the action of φ, and ∂X is the fixed point set, ∂X

is totally geodesic in (X , gT X
s ) and the second fundamental form is zero. By using [6, (1.4)]

as in [6, p. 777, line 6, (1.25)], we see that ˙̃S = 0. Hence, as in [6, (4.37)] we see that, with
the notation of [6, (1.17), (1.45)], if m is even,

eb(T X,∇T X
0 ) = 0, ẽb(Y,∇T X

s ) = 0. (3.57)

From Theorem 2.2, (3.11) and (3.55) to (3.57), we get Theorem 3.4 in the product case.

3.3 Proof of Theorem 0.1

We establish first Theorem 0.1 when the metric gT X verifies (2.1) and a general metric hF

on F .
Let hF

0 be a Hermitian metric on F such that (2.3) holds on ∂X × [0, ε[. We will add a
subscript 0 to indicate the objects corresponding to gT X , hF

0 . Now the function h0 in (3.50)
is defined by hF

1 := hF and hF
0 .

Note that when m is even, by (3.6), eb(Y,∇T X ) = 0, as Ṡ = 0 if gT X verifies (2.1). Thus
by Theorems 2.2, 3.4, (2.1), (3.7) and (3.51),

log

(‖ · ‖RS
det H•(X,Y1,F)

‖ · ‖M,∇ f
det H•(X,Y1,F)

)2

= −
∫

X

θ(F, hF
0 )(∇ f )∗ψ(T X,∇T X )

+1

2

∫

Y1

θ(F, hF
0 )(∇ f )∗ψ(T Y1,∇T Y1)

−1

2

∫

V1

θ(F, hF
0 )(∇ f )∗ψ(T V1,∇T V1)

−1

2
rk(F)χ(∂X) log 2 +

∫

X

h0 e(T X,∇T X )

+1

2

⎛

⎜
⎝

∫

V1

−
∫

Y1

⎞

⎟
⎠ h0 e(T Y,∇T Y )

−
∑

x∈B,x /∈Y1

h0(x)(−1)ind(x). (3.58)

For T � 0, set (cf. [4, (3.47)])

BT = 1

2
ṘT X + √

T
m∑

i=1

ei ∧ ̂∇T X
ei

∇ f + T |d f |2. (3.59)

By [4, Def. 3.6, Remark 3.8], (∇ f )∗ψ(T X,∇T X ) is a locally integrable current on X with
values in o(T X), which is smooth on X \ B, with B in (1.24), and

(∇ f )∗ψ(T X,∇T X ) =
∞∫

0

dT

BX∫
d̂ f

2
√

T
exp(−BT ). (3.60)
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By (2.1), (3.59) and ∇ f |∂X ∈ T ∂X , the coefficient of êm in j∗ BT is zero on ∂X , thus

j∗
BX∫

d̂ f exp(−BT ) = 0, j∗(∇ f )∗ψ(T X,∇T X ) = 0 on ∂X = Y. (3.61)

By the same proof of [4, (3.60)], we get in the sense of distributions

lim
T →∞

BX∫

exp(−BT ) =
∑

x∈B

(−1)ind(x)δx − 1

2

∑

x∈B∩∂X

(−1)ind(x)δx . (3.62)

By the equation above (3.52), (3.61) and (3.62), we get an extension of (3.54),
∫

X

(
θ(F, hF )− θ(F, hF

0 )
)
(∇ f )∗ψ(T X,∇T X )

=
∫

X

dh0 (∇ f )∗ψ(T X,∇T X ) = −
∫

X

h0d(∇ f )∗ψ(T X,∇T X )

= −
∫

X

h0

[
e(T X,∇T X )−

∑

x∈B

(−1)ind(x)δx + 1

2

∑

x∈B∩∂X

(−1)ind(x)δx

]
. (3.63)

By (3.53a), (3.58) and (3.63), we get Theorem 0.1 if gT X verifies (2.1).
For a general metric gT X , we introduce g̃T X as in (0.9), by combining Theorem 0.1 for

(g̃T X , hF ), and Theorem 3.4 for the two couples of metrics (gT X , hF ) and (g̃T X , hF ), and
the fact that g̃T X = gT X on ∂X , we get Theorem 0.1 for (gT X , hF ).

Remark 3.5 We denote by X̃ the fibers of the fibration X × R → R, and denote by gT X̃ a
metric on T X̃ such that gT X̃ |X×{s} = gT X

s with gT X
s = (1 − s)g̃T X + sgT X for s ∈ [0, 1].

Then the canonical connection ∇T X̃ on T X̃ is (cf [4, (4.50)])

∇T X̃ = ∇T X
s + ds ∧

( ∂

∂s
+ 1

2
(gT X

s )−1 ∂

∂s
gT X

s

)
. (3.64)

By again the argument in [4, Theorem 3.18], we get on X × R,

d X×R(∇ f )∗ψ(T X̃ ,∇T X̃ )

= e(T X̃ ,∇T X̃ )−
∑

x∈B

(−1)ind(x)δ{x}×R + 1

2

∑

x∈B∩∂X

(−1)ind(x)δ{x}×R. (3.65)

Integrating the coefficient of ds in (3.65) on [0, 1], we get

(∇ f )∗ψ(T X,∇T X )− d X

1∫

0

ds i
( ∂

∂s

)
(∇ f )∗ψ(T X̃ ,∇T X̃ )

= (∇ f )∗ψ(T X, ∇̃T X )+ ẽ(T X,∇T X
s ). (3.66)

We compute the second term in (3.66). From (3.64), the analogy of (3.59) for T X̃ is

B̃T = 1

2
ṘT X̃ + √

T
m∑

i=1

ei ∧ ̂∇T X̃
ei

∇ f + T |d f |2. (3.67)
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Let j̃ : Y × R → X × R be the natural embedding. By [6, Lemma 1.7 and (1.16)], for
s ∈ [0, 1]

j̃∗ ṘT X̃ |Y×{s} = ṘT Y + 2s2 Ṡ2 + s
m−1∑

α=1

〈
eα, j

∗ RT X em

〉
êα ∧ êm + 2ds ∧ Ṡ ∧ êm . (3.68)

As ∇ f |∂X ∈ T ∂X , from [6, (1.14)], (3.60), (3.67) and (3.68), we get finally on Y ,

∫ 1

0
ds i(

∂

∂s
)j̃∗(∇ f )∗ψ(T X̃ ,∇T X̃ ) = π−1/2

∞∫

0

dT

BY∫
d̂ f

2
√

T

× exp
(

− 1

2
ṘT Y − √

T
m−1∑

α=1

eα ∧ ̂∇T Y
eα ∇ f − T |d f |2

) ∞∑

k=0

(−1)k Ṡ2k+1

k! (2k + 1)
. (3.69)

We could not see directly whether the final formula in (3.69) is exact on ∂X . Thus we prefer
to state Theorem 0.1 by using the current (∇ f )∗ψ(T X, ∇̃T X ).

3.4 Theorem 0.3: product case

We use the notation from the Introduction. We assume first that gT Z and hF have product
structure near ∂Z and V , i.e., (2.1) and (2.3) hold near ∂Z and V .

By the argument in the proof of [5, Theorem 1.10], we can choose a Morse function
f : Z → R in Lemma 1.5 which restricts to a Morse function on ∂Z ∪ V and satisfies
∇ f |∂Z∪V ∈ T (∂Z ∪ V ), d2 f (x)|n > 0 for x ∈ B ∩ (∂Z ∪ V ).

Let (C•(W u
Z1
/W u

V ∪Y1
, F), ∂̃), (C•(W u/W u

Y1∪Y2
, F), ∂̃) and (C•(W u

Z2
/W u

Y2
, F), ∂̃) be the

complexes corresponding to (Z1, V ∪ Y1, F), (Z , Y1 ∪ Y2, F) and (Z2, Y2, F) defined by
(1.32), respectively; then we have the following short exact sequence of complexes:

0 → C•(W u
Z1
/W u

V ∪Y1
, F) → C•(W u/W u

Y1∪Y2
, F) → C•(W u

Z2
/W u

Y2
, F) → 0. (3.70)

It induces the complex (0.16), and the canonical section � of λ(F) in (0.20). Let ‖ · ‖M,∇ f
λ(F)

be the Milnor metric on λ(F). As for each degree the complex (3.70) splits isometrically, by
Definition 1.6, we have

‖�‖M,∇ f
λ(F) = 1. (3.71)

Let Y := ∂Z ∪ V . By (2.18), we get

log

(‖ · ‖RS
det H•(Z ,Y1∪Y2,F)

‖ · ‖M,∇ f
det H•(Z ,Y1∪Y2,F)

)2

= −1

2
χ(∂Z)rk(F) log(2)

−
∫

Z

θ(F, hF )(∇ f )∗ψ(T Z ,∇T Z )

−1

2

∫

V1∪V2

θ(F, hF )(∇ f )∗ψ(T Y,∇T Y)

+1

2

∫

Y1∪Y2

θ(F, hF )(∇ f )∗ψ(T Y,∇T Y),

(3.72)
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log

(‖ · ‖RS
det H•(Z1,V ∪Y1,F)

‖ · ‖M,∇ f
det H•(Z1,V ∪Y1,F)

)2

= −1

2
χ(∂Z1)rk(F) log(2)

−
∫

Z1

θ(F, hF )(∇ f )∗ψ(T Z ,∇T Z )

−1

2

∫

V1

θ(F, hF )(∇ f )∗ψ(T Y,∇T Y)

+1

2

∫

V ∪Y1

θ(F, hF )(∇ f )∗ψ(T Y,∇T Y). (3.73)

For the triplet (Z2, Y2, F), we get, again from (2.18),

log

(‖ · ‖RS
det H•(Z2,Y2,F)

‖ · ‖M,∇ f
det H•(Z2,Y2,F)

)2

= −1

2
χ(∂Z2)rk(F) log(2)

−
∫

Z2

θ(F, hF )(∇ f )∗ψ(T Z ,∇T Z )

− 1

2

∫

V ∪V2

θ(F, hF )(∇ f )∗ψ(T Y,∇T Y)

+ 1

2

∫

Y2

θ(F, hF )(∇ f )∗ψ(T Y,∇T Y).

(3.74)

Note that ∂Z1 = Y1 ∪V1 ∪V , ∂Z2 = Y2 ∪V2 ∪V . From (0.20), (3.72), and (3.74) we deduce

log
(
‖�‖RS

λ(F)

)2 = log
(
‖�‖M,∇ f

λ(F)

)2 − χ(V )rk(F) log(2), (3.75)

and (0.21) follows from (3.71), and (3.75).

3.5 Theorem 0.3: general case

Now assume general metrics gT Z , hF . Let gT Z
0 and hF

0 be the metrics on T X and F such
that (2.1), (2.3) hold near ∂Z and V , moreover, on ∂Z ∪ V we have gT Z

0 = gT Z , hF
0 = hF .

If m is even, then by Theorem 3.4

log

( ‖ · ‖RS
det H•(Z1,V ∪Y1,F)

‖ · ‖RS
det H•(Z1,V ∪Y1,F),0

)2

=
∫

(Z1,∂Z1)

log

( ‖ · ‖det F

‖ · ‖det F,0

)2

E(T Z1,∇T Z1
0 )

+
∫

(Z1,∂Z1)

Ẽ(T Z1,∇T Z1
0 ,∇T Z1)θ(F, hF

1 )

+ rk(F)

⎛

⎜
⎝

∫

V1

−
∫

V ∪Y1

⎞

⎟
⎠ B(∇T Z1). (3.76)
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If m is odd, then

log

( ‖ · ‖RS
det H•(Z1,V ∪Y1,F)

‖ · ‖RS
det H•(Z1,V ∪Y1,F),0

)2

= rk(F)
∫

∂Z1

B(∇T Z1). (3.77)

We have similar equations for log

( ‖·‖RS
det H•(Z ,Y1∪Y2,F)

‖·‖RS
det H•(Z ,Y1∪Y2,F),0

)2

and log

( ‖·‖RS
det H•(Z2,Y2,F)

‖·‖RS
det H•(Z2,Y2,F),0

)2

. Now

observe that on V , computing Ṡ in Z2 amounts to changing the inward unit normal in Z1

such that

B(∇T Z1)|V = (−1)m−1 B(∇T Z2)|V ∈ �m−1(V, o(T V )). (3.78)

From Theorem 0.3 for gT Z
0 and hF

0 , and from (3.76)–(3.78), we get Theorem 0.3 for gT Z , hF .
The proof of Theorem 0.3 is complete.

3.6 Proof of Theorem 0.4

The argument for the Milnor metrics leading to (3.71) applies also to this case and gives

‖̃�‖M,∇ f
λ̃(F)

= 1. (3.79)

By Theorem 2.2 and (3.79) for (Z , Y1, F), (Z , F) and (Y1, F), and arguing as in (3.72) and
(3.74), we obtain (0.24) in the product case, i.e., log(‖̃�‖RS,2

λ(F)) = 0.
For general metrics, we apply the anomaly formula, Theorem 3.4, and obtain as in (3.76)

and (3.77),

log(‖̃�‖RS,2
λ(F)) = rk(F)

⎛

⎜
⎝−
∫

∂Z

+
∫

∂Z\Y1

+(−1)m+1
∫

Y1

⎞

⎟
⎠ B(∇T Z ). (3.80)

The proof of Theorem 0.4 is complete.
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