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Chapter 1

Introduction

R. W. Sharpe’s book [56] explains that differential geometry is, ultimately, the study
of a connection on a principal bundle. A beautiful realization of this idea are Car-
tan’s generalized space, which generalize both semi-Riemannian and homogeneous
geometries. Heuristically, a Cartan geometry of type (G,P ) – where P is a closed
subgroup of a Lie group G – is a curved version of the homogeneous space G/P .
This idea is encoded via a special kind of connection one-form taking values in the
Lie algebra of G, which is defined on a principal bundle with structure group P (cf.
Chapter 2.1).

Among the very rich class of Cartan geometries, parabolic geometries provide
in many ways the best confirmation that differential geometry is the study of a
connection on a principal bundle. As is detailed in Chapter 2.3, these Cartan
geometries induce underlying geometries on the base manifolds and there always
exists a unique, canonical connection for basically all such underlying geometries.
Because of this fundamental property and other powerful machinery flowing from
it, and because the underlying geometric structures in this class are quite general
and include a number of important examples from differential geometry, there has
been a lot of interest in parabolic geometries in the recent literature. (For a survey
of some of the main advances, see A. Čap’s survey paper [14].)

Perhaps one of the most important examples of a parabolic geometry is provided
by semi-Riemannian conformal geometry (cf. Chapter 3.1; two other interesting and
important examples are discussed below). On the other hand, one of the most basic
and important objects to investigate in studying a connection on a principal bundle
is its holonomy. The starting point for the present work is a study of the holonomy
of conformal manifolds, which is defined to be the holonomy of the canonical Car-
tan connection associated to a conformal structure. The more general aspects from
parabolic geometry which are introduced and utilized here, all come into play from
pursuing the question of which groups can occur as the holonomy of a conformal
manifold.

To get a better picture of how we pose the question which this work is devoted to,
it is useful to compare what’s known about conformal holonomy with the situation
for holonomy of semi-Riemannian manifolds. The holonomy group Hol(M, g) of an
oriented semi-Riemannian manifold (M, g) of signature (p, q) is of course a subgroup
of SO(p, q). In contrast, if we consider the conformal class of metrics c = [g], the
conformal holonomy group Hol(M, c) is a subgroup only of SO(p + 1, q + 1), (cf.
Chapter 3.1).
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The differences become more interesting if we ask what the geometrical meaning
of holonomy-invariant subspaces (under the standard representations) is. First of
all, there is a bijective correspondence between one-dimensional Hol(M, c)-invariant
subspaces of Rp+1,q+1 and Einstein metrics in the conformal class c which are de-
fined up to singularities. For decomposable holonomy preserving spaces of larger
dimension, there is an analog to the decomposition theorem of De Rham/Wu for
semi-Riemannian manifolds, where again the connection to Einstein structures ap-
pears and the decomposition holds up to singularities. This and other recent results
for reducible conformal holonomy, due to F. Leitner, S. Armstrong and T. Leistner,
are detailed in Chapter 3.2.

If on the other hand we look at conformal manifolds with irreducible confor-
mal holonomy, the picture is not so well understood. The first problem is there is
no evident analog for conformal holonomy of the Berger list of possible irreducible
holonomy groups of semi-Riemannian manifolds. The canonical Cartan connection
of conformal geometry is not known to possess any property which, analogous to
vanishing torsion for affine connections, produces an algebraic restriction giving a
finite list of possible irreducible holonomy groups. Indeed, the possibility of giving a
(more or less complete) classification of conformal holonomy groups in Riemannian
signature is the result of a very special algebraic fact: the only connected irreducible
subgroup of SO(1, n+1) (in which the conformal holonomy group of an orientable,
conformal Riemannian manifold of dimension n is by definition contained) is the
connected component SO0(1, n + 1). Thus, irreducible conformal holonomy plays
no real role in Riemannian signature. Moving to arbitrary signature, the corre-
sponding algebraic result of course no longer holds, and even for SO(2, n) we know
of no practically useful (i.e. finite) classification of the irreducible subgroups.

Besides the problem of obtaining a finite list of possible irreducible conformal
holonomy groups, the natural question for each such group is what (additional) ge-
ometric structures are associated to manifolds with conformal holonomy contained
in it, and if there are geometric properties characterizing this. That is, are there
analogs to the setting of semi-Riemannian geometry, where irreducible manifolds
are divided by holonomy into generic, Kähler, Calabi-Yau, quaternionic Kähler, etc.
type and their pseudo-Riemannian variants.

Our Ansatz for studying irreducible conformal holonomies, is to impose the fur-
ther condition of transitivity. That is, we consider only irreducible subgroups H of
SO(p + 1, q + 1) which act transitively on the homogeneous model space for con-
formal geometry Sp,q (this space can be thought of as the signature (p, q) analog of
the n-sphere, cf. Chapter 3.1 for definition). This new approach allows a system-
atic study of a broad class of possible irreducible conformal holonomy groups, via
parabolic geometries which are naturally connected with them.

In Chapter 3.3 we explain how the generalized Fefferman construction due to
Čap in [14] produces out of a parabolic geometry of a certain type (H,Q) a confor-
mal manifold with induced Cartan connection having holonomy naturally contained
in H. We also detail an analog of the usual holonomy reduction principle for Cartan
connections and, generalizing results from Čap’s work on twistor spaces in parabolic
geometry [13] to our situation, give conditions for the existence of a local converse
to the Fefferman construction for manifolds with conformal holonomy contained in
a transitive subgroup H.

There is an extensive theory of transitive transformation groups (cf. A. L. On-
ishchik’s book, [53]), and we make use of results from this theory in Chapter 3.4
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to indicate how a list of the possible connected, irreducible transitive conformal
holonomy groups in all but one (Lorentzian!) signature may be found. It must be
emphasized that the general results in Chapter 3 in no way settle the question of
irreducible transitive conformal holonomy. For one thing, the conformal manifold
produced from a parabolic geometry of some type (H,Q) by the generalized Feffer-
man construction is not in general known to have conformal holonomy contained in
H. This is because the Cartan connection induced by the Fefferman construction is
in general not known to be the canonical Cartan connection of the conformal struc-
ture. This is a problem which it appears must be solved by detailed, case-by-case
calculations for each of the transitive subgroups of SO(p+ 1, q + 1).

The first groups in the list from Chapter 3.4 are familiar from the Berger
list. In particular, the first non-generic connected, irreducible transitive confor-
mal holonomy group which can appear as a full holonomy group is known to be
SU(p′+1, q′+1). In [18] and [19], Čap and A. R. Gover showed that this conformal
holonomy precisely corresponds to (a slight modification of) the classical Fefferman
construction, which defines a conformal class of metrics on an S1 bundle over a
CR manifold of signature (p′, q′), cf. also [45] for an earlier approach which also
considered CR structures with torsion. CR manifolds give the next important ex-
ample of an underlying geometric structure associated to a parabolic geometry, of
type (PSU(p′+1, q′+1), Q) for a certain parabolic subgroup Q. CR structures are
discussed in Chapter 4.1, as are their quaternionic analog, the quaternionic contact
(QC) structures introduced by O. Biquard in [6]. QC structures are the under-
lying structures for parabolic geometries of type (PSp(p′′ + 1, q′′ + 1), Q′). The
main new result, proved in Chapter 4.3, is a symplectic version of the holonomy
correspondence for SU(p′ + 1, q′ + 1) and CR structures:

Theorem 1 Given a quaternionic contact structure of signature (p′′, q′′), the con-
formal holonomy of the corresponding Fefferman space is contained in Sp(p′′+1, q′′+
1). Conversely, let (M, c) be a conformal manifold of signature (4p′′ + 3, 4q′′ + 3).
If Hol(M, c) is contained in Sp(p′′ + 1, q′′ + 1), then (M, c) is locally isomorphic to
a Fefferman space over a quaternionic contact structure of signature (p′′, q′′).

Our proof of this Theorem generalizes the methods of [18] and [19], and we
believe this also points to the techniques which could be applied to the other irre-
ducible transitive groups in Chapter 3.4, relying on explicit matrix representations
of the groups in question. Finally, Chapter 4.4 gives a simple method of inducing
Weyl structures for the conformal Cartan geometry on the Fefferman space. This
gives in particular a very direct way, not known to us in the literature, of seeing the
relation between the conformal structure of the parabolic Fefferman space over a
CR manifold, and the explicit metrics given in the classical Fefferman construction,
which is done in Chapter 4.5.

Acknowledgements: I am very thankful to my advisor, Helga Baum, who sparked
my interest in the field of conformal geometry and has given me much support,
advice and inspiration for my work on this and other problems during my studies
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provided useful criticisms and ideas in response. I am also grateful to Josef Šilhan
for helping me a number of times with patient exposition on Kostant’s BBW and
representation theory. My work on this dissertation was supported by the DFG
International Research Training Group “Arithmetic and Geometry” (GRK 870) at
Humboldt-Universität zu Berlin. I would like to thank the speaker of GRK 870,
Prof. Jürg Kramer, for his engagement in this project, and particularly Marion
Thomma for friendly and patient organizational support throughout my fellowship.

7



8



Chapter 2

Parabolic geometry

Here we develop the language of parabolic Cartan geometries, of which conformal
geometry is one of the most important; this will be applied in the subsequent sec-
tions to the conformal holonomy problem. The basic references for this material
are [21] and [22]. For a survey of the growing field of parabolic geometries, see [14].

2.1 Cartan geometries

Let G be a Lie group and P ⊂ G a closed subgroup with Lie algebras p ⊂ g,
respectively. Conceptually, a Cartan geometry of type (G,P ) is a curved geometry
modeled on the homogeneous space G/P . This notion is formalized in the following
definition:

Definition 2 A Cartan geometry of type (G,P ) is given by the data (P, π,M, ω),
where π : P → M is a principal fiber bundle with structure group P (or a P -
PFB) and ω is a one-form on P with values in g, ω ∈ Ω1(P; g), called the Cartan
connection and satisfying, for all p ∈ P, u ∈ P, and X ∈ p:

R∗p(ω) = Ad(p−1) ◦ ω; (2.1)

ω(X̃) = X; (2.2)

ω(u) : TuP
∼=→ g. (2.3)

In this definition, as in general for any P -PFB, we write X̃ for the fundamental
vector field on P induced by X ∈ p. Moreover, by property (2.3), the smooth vector
field X̃ on P given by

X̃(u) = ω(u)−1(X) (2.4)

for all u ∈ P is well-defined and non-vanishing for any X ∈ g. The Cartan geometry
is said to be complete if all such vector fields X̃ are complete. In any case, these
vector fields give a trivialization of the tangent bundle of P, which we can project
to give an isomorphism of the tangent bundle of M with a natural bundle of P:

TP ∼= P × g; (2.5)
TM ∼= P ×P (g/p). (2.6)

In particular, we have dim(M) = dim(G/P ), a property clearly demanded of a
geometry modeled on G/P .
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Definition 3 The curvature of the Cartan connection ω is the two-form on P with
values in g, Kω ∈ Ω2(P; g), defined for all u ∈ P, and all ξ, η ∈ TuP, by:

Kω(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)]g. (2.7)

From the properties (2.1) and (2.2) of the Cartan connection, the curvature of a
Cartan connection of type (G,P ) is P -equivariant and horizontal. Thus it induces
a two-form on M which we’ll denote with the same symbol, Kω ∈ Ω2(M ; g).

Example 4 Let G be a Lie group, P a closed subgroup, and π : G → G/P the
projection onto the quotient. For any g ∈ G and ξ ∈ TgG, let ωG ∈ Ω1(G, g) be the
Maurer-Cartan form defined by

ωG(ξ) = (Lg−1)∗(ξ) ∈ TeG = g.

Then (G, π,G/P, ωG) defines a Cartan geometry of type (G,P ). By the structure
equation for the Maurer-Cartan form, its curvatureKωG

vanishes identically. 2

So it really is legitimate to think of Cartan geometries as curved generalizations
of homogeneous spaces. The following, which could be called the fundamental
theorem of Cartan geometry, says that the curvature of the Cartan connection
really measures how much a Cartan geometry deviates from the homogeneous model
space:

Theorem 5 The curvature of a Cartan geometry of type (G,P ) vanishes identically
if and only it is locally isomorphic to the homogeneous model geometry in Example
4. If the Cartan geometry is complete, with connected structure group and simply
connected base manifold, the isomorphism is global.

For a proof, see Chapter 5.5 of [56].

For any Cartan geometry, there is a special class of natural vector bundles, the
so-called Tractor bundles. Given a representation ρ : G → GL(W ) of the group
G, the restriction of the representation to the subgroup P defines the associated
Tractor bundle:

W = P ×(P,ρ) W. (2.8)

An important property of associated Tractor bundles is that they come with
naturally induced linear connections. This can be seen via the principal Tractor
bundle of a Cartan geometry (P, π,M, ω) of type (G,P ), which is a G-PFB con-
taining P together with a principal bundle connection. Define the extension of P
to a G-PFB by

G := P ×P G.

Then

ι : P ↪→ G
ι : u 7→ [u, e]

gives an inclusion, and there exists a unique principal bundle connection ω̄ ∈
Ω1(G, g) such that ι∗ω̄ = ω. We call the set (G, π̄,M, ω̄) the principal Tractor
bundle.
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Then for any associated Tractor bundle defined by a representation ρ : G →
GL(W ), we have

W = P ×(P,ρ) W
∼= G ×(G,ρ) W,

and hence W inherits a linear connection ∇W from ω̄ in the usual manner.

2.2 Parabolic subgroups and graded Lie algebras

Cartan geometries include a very broad range of geometric structures, but in some
ways this is a drawback. For an arbitrary pair (G,P ), it’s a very hard problem to
determine a natural Cartan geometry of type (G,P ), and the geometric meaning of
the Cartan connection may be just as difficult to understand. For the sub-class of
parabolic Cartan geometries, the situation is much better. The important properties
of parabolic geometries which will be developed in the next section depend crucially
on the algebraic facts about parabolic subgroups, which we review here. References
for most of this material are Chapter 2 of [3] and Chapter 2 of [49].

Definition 6 A parabolic pair is a pair of groups (G,P ), where G is a (real or
complex) semi-simple Lie group, and P ⊂ G is a parabolic subgroup. That is,
the Lie algebra p of P is parabolic. I.e. in the complex case it contains a maxi-
mal solvable (or Borel) subalgebra of the Lie algebra g of G; in the real case, the
complexification has this property. Such a pair of Lie algebras (g, p) is called an
infinitesimal parabolic pair.

Parabolic pairs are closely related to graded Lie algebras:

Definition 7 A |k|-grading of a semi-simple Lie algebra g, for k ∈ N, is a vector
space decomposition

g = g−k ⊕ . . .⊕ g−1 ⊕ g0 ⊕ g1 ⊕ . . .⊕ gk, (2.9)

which is compatible with the Lie bracket:

[gi, gj ] ⊆ gi+j , (2.10)

where by definition, gl := {0} for |l| > k. If furthermore the nilpotent subalgebra
g− = g−k ⊕ . . .⊕ g−1 is generated by g−1, and no simple factor of g is contained in
g0, then the graded Lie algebra is called effective.

For an effective |k|-graded semi-simple Lie algebra g and for −k ≤ i ≤ k, letting
gi = gi ⊕ . . .⊕ gk defines a filtration

g = g−k ⊃ g−k+1 ⊃ . . . ⊃ g0 ⊃ . . . ⊃ gk ⊃ 0 (2.11)

which is compatible with the Lie bracket. Now, given a Lie group G with g as its Lie
algebra, let G0 be the subgroup of all elements which preserve the grading of g and
let P be the subgroup of all elements preserving the induced filtration. Then the
Lie algebra ofG0 is g0, the Lie algebra of P is p = g0, and p is a parabolic subalgebra.

Furthermore, the subalgebra p+ := g1 determines a subgroup P+ ⊂ P which is
diffeomorphic to p+ under the exponential map, and G0

∼= P/P+ so P = G0 o P+.
The structure of P is further described by the following Proposition (cf. Proposition
2.10 of [21]):
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Proposition 8 Let G be a semisimple Lie group whose Lie algebra g has a |k|-
grading, and let P be the corresponding parabolic subgroup as above. Then for any
element g ∈ P , there exist unique elements g0 ∈ G0 and Xi ∈ gi for i = 1, . . . , k,
such that g = g0 exp(X1) . . . exp(Xk).

The following Proposition (cf. Proposition 2.2 of [21]) summarizes a number of
other important basic properties we’ll need:

Proposition 9 Let g be an effective semisimple |k|-graded Lie algebra. Then the
following assertions hold:
1. There is a unique element ε0 ∈ g0, called the grading element, such that
[ε0, X] = jX for all X ∈ gj.
2. Let Bg be the Killing form. Then Bg(gi, gj) = 0 unless i+j = 0, and Bg induces
an isomorphism gi ∼= (g−i)∗ of g0-modules for all i = 1, . . . , k.

To see how on the other hand a parabolic pair defines a graded Lie algebra, we
note first that a parabolic sub-algebra p of a semi-simple Lie algebra g automatically
induces a filtration of g. For a subspace u ⊂ g, let u⊥ be the orthogonal subspace
with respect to the Killing form Bg. The following fact is standard:

Lemma 10 For a parabolic subalgebra p of a semi-simple Lie algebra g, p+ := p⊥

is the maximal nilpotent ideal of p. The quotient p0 := p/p+ is reductive and
p ∼= p0 ⊕ p+.

Definition 11 For an infinitesimal parabolic pair (g, p) as above, let

p+, (p+)2 = [p+, p+], . . . , (p+)k = [p+, (p+)k−1] 6= 0, (p+)k+1 = 0 (2.12)

be the descending central series of p+. Let g0 := p and gj := (p+)j for 1 ≤ j. For
j positive, define g−j := (gj+1)⊥. Then [gi, gj ] ⊆ gi+j and

g = g−k ⊃ g−k+1 ⊃ . . . ⊃ g0 = p ⊃ p+ = g1 ⊃ . . . ⊃ gk ⊃ 0 (2.13)

is the Lie algebra filtration of g for the pair (g, p).

The associated graded algebra to the filtered Lie algebra g is given by

gr(g) := (g−k/g−k+1)⊕ . . .⊕ (g−1/g0)⊕ (g0/g1)⊕ (g1/g2)⊕ . . .⊕ (gk) (2.14)
=: gr−k(g)⊕ . . .⊕ gr−1(g)⊕ gr0(g)⊕ gr1(g)⊕ . . .⊕ grk(g). (2.15)

While the filtration of g is canonical given a parabolic subalgebra, a choice is re-
quired to identify g with the graded Lie algebra, cf. Lemma 2.2 of [12]:

Lemma 12 There are (non-canonical) splittings of the exact sequences

0 → gj+1 → gj → grj(g) → 0 (2.16)

which induce a Lie algebra isomorphism between g and grg.

Such a choice of splittings is an algebraic Weyl structure. An algebraic Weyl struc-
ture may be fixed, in the complex case, via a choice of a Cartan subalgebra c of g,
a root system ∆(g, c) for it, and a set of simple, positive roots ∆0 ⊂ ∆+. Then a
standard parabolic sub-algebra may be defined for any subset of ∆0:

Definition 13 Given a subset Σ ⊆ ∆0 of simple, positive roots, the standard
parabolic subalgebra pΣ of Σ is given by

pΣ = c⊕ <
⊕
α∈∆+

gα > + <
⊕

α∈∆0\Σ

g−α > (2.17)
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In particular, the set Σ = ∆0 of all simple roots corresponds to the standard
Borel subalgebra for that choice of Cartan subalgebra and positive roots. It is a
standard result in the structure theory of semi-simple Lie algebras that all Borel
(i.e. maximal solvable) subalgebras are conjugate, and hence conjugate to a stan-
dard one, implying that every parabolic subalgebra is also conjugate to a standard
parabolic determined by a subset Σ as in Definition 13.

Standard parabolics have two important and nice properties. First, as is clear
from Definition 13, standard (complex) parabolics may be determined by marked
Dynkin diagrams, namely by the Dynkin diagram of the semi-simple Lie algebra g,
with crosses over those nodes corresponding to the simple positive roots contained
in Σ. Furthermore, given a standard parabolic subalgebra determined by a set of
roots Σ, g receives a grading given by Σ-height:

Definition 14 For Σ as above, the Σ-height of a root α, htΣ(α) is the sum of co-
efficients of roots in Σ in the representation of α in terms of simple roots.

For a standard parabolic pair (g, pΣ), the grading components of g are given by:

g0 = c⊕ <
⊕

htΣ(α)=0

gα >; (2.18)

gi =<
⊕

htΣ(α)=i

gα >, ∀ i ∈ Z, i 6= 0. (2.19)

Then for some integer k ≥ 1,

g = g−k ⊕ . . .⊕ g−1 ⊕ g0 ⊕ g1 ⊕ . . .⊕ gk (2.20)

determines a |k|-grading of g and a Lie algebra isomorphism of g with grg, the
associated graded algebra determined by the canonical filtration of g given by the
parabolic.

We note also that these notions can be carried over, with some adjustments, to
parabolic subalgebras of real semi-simple Lie algebras, which may be described in
terms of Satake diagrams, cf. [58]. For our purposes, i.e. for the parabolic geome-
tries which interest us in Chapters 3 and 4, the parabolic subalgebra may always be
taken as standard since we will work with explicit matrix representations of the Lie
algebras, and the gradings will be given explicitly. Furthermore, the Lie algebras
we’ll deal with are all simple and their gradings effective. For these reasons, in the
sequel and in the following sections on parabolic geometries, we will always take as
given an effective semi-simple |k|-graded (real or complex) Lie algebra. A parabolic
pair (G,P ) with Lie algebras satisfying these conditions will be called standard,
effective.

We conclude this section with facts we’ll need from Lie algebra cohomology
theory, applied to graded Lie algebras. As discussed above, we have a graded
algebra g. In particular, we have the decompositions:

g = g− ⊕ p (2.21)
= g− ⊕ g0 ⊕ g+, (2.22)

where g+ := g1 = p+ and the Killing form Bg induces an isomorphism g+
∼= (g−)∗.

Note also the isomorphism g/p ∼= g−, with which g− is endowed with a P -module
structure. We are interested in the cohomology of the module g, under the adjoint
representation restricted to the subalgebras g− or g+. Then the chain groups and
differentials are given by:
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Definition 15 The chain groups Cn(g∓, g) of the graded Lie algebra g are

Cn(g∓, g) := Hom(Λng∓, g). (2.23)

The differential ∂ : Cn(g∓, g) → Cn+1(g∓, g) is given by

(∂φ)(X0, . . . , Xn) :=
n∑
i=0

(−1)i[Xi, φ(X0, . . . , X̂i, . . . , Xn)]

+
∑

0≤i<j≤n

(−1)i+jφ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn),

for φ ∈ Cn(g∓, g) and X0, . . . , Xn ∈ g∓.

It is a basic result from cohomology of Lie algebra modules that the pairs
(C∗(g∓, g), ∂) form chain complices, i.e. ∂ ◦ ∂ = 0. Moreover, the chain groups
inherit natural G0-module structures (in fact, they have P -module structures) and
the differentials are G0-module homomorphisms. The cohomology groups also have
the structure of G0-modules; they are defined by

Hn(g∓, g) =
ker(∂ : Cn(g∓, g) → Cn+1(g∓, g))
im(∂ : Cn−1(g∓, g) → Cn(g∓, g))

. (2.24)

Furthermore, we denote by Cnl (g−, g) the space of chains of homogeneity l:

Cnl (g−, g) := {φ ∈ Cn(g−, g)|φ(gi1 , . . . , gin) ⊆ gi1+...+in+l}. (2.25)

From the definition, it follows that the differential ∂ preserves homogeneity, and
thus the cohomology groups split:

Hn(g−, g) = ⊕lHn
l (g−, g). (2.26)

Finally, we note that a codifferential ∂∗ can be defined using the isomorphisms

Cn(g−, g) ∼= Λn(g−)∗ ⊗ g

∼= (Λ(g+)∗ ⊗ g∗)∗ ∼= (Cn(g+, g
∗))∗.

∂∗ : Cn(g−, g) → Cn−1(g−, g) is defined to be the negative of the dual map to ∂ :
Cn−1(g+, g

∗) → Cn(g+, g
∗). The codifferential and cohomology have the following

important properties (cf. 2.5, Proposition 2.6 and Proposition 2.13 of [21]):

Proposition 16 There exists a metric on the chain groups with respect to which
∂∗ is adjoint to ∂. In particular, we have the Hodge decomposition

Cn(g−, g) = im(∂)⊕ im(∂∗)⊕ (ker(∂) ∩ ker(∂∗)), (2.27)

and for the Kostant Laplace operator 2 = ∂ ◦∂∗+∂∗ ◦∂, this decomposition induces
an isomorphism

Hn(g−, g) ∼= ker(2). (2.28)

The codifferential ∂∗ : C2(g−, g) → C1(g−, g) can be expressed as follows. Let {Xα}
be a basis for g− and let {Zα} be a dual basis of g+ with respect to the Killing form.
Then for φ ∈ C2(g−, g) and X ∈ g−, we have:

(∂∗φ)(X) =
∑
α

[φ(X,Xα), Zα]− 1
2

∑
α

φ([X,Zα]−, Xα). (2.29)

The codifferential ∂∗ : C2(g−, g) → C1(g−, g) is a homomorphism of P -modules.
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The P -equivariance of the codifferential is essential for many of the natural
constructions with parabolic geometries. In particular, the existence of harmonic
prolongations (cf. Section 3 of [21]) depends on this property, which in turn are
necessary to establish the existence of canonical Cartan geometries for parabolic
structure, as discussed in the sequel.

Especially for the calculations in Chapter 4.2, it is often useful to write the
codifferential ∂∗ : C2(g−, g) → C1(g−, g) as the sum of two operators ∂∗1 − ∂∗2 from
the formula (2.29): For X ∈ g− and φ ∈ C2(g−, g), and {Xα}, {Zα} as above, we
define:

(∂∗φ)1(X) :=
∑
α

[φ(X,Xα), Zα]; (2.30)

(∂∗φ)2(X) :=
1
2

∑
α

φ([X,Zα]−, Xα). (2.31)

2.3 Basic properties of parabolic geometries

Definition 17 A parabolic geometry is a Cartan geometry (P, π,M, ω) of type
(G,P ), for a standard, effective parabolic pair (G,P ).

Parabolic geometries have the nice feature, not evident for general Cartan ge-
ometries, that they can be understood in terms of “normal” geometric structures
on the base manifold M . Let us first take note of the induced filtration on the tan-
gent bundle TM . This is induced by a canonical filtration on the so called adjoint
bundle, an important object in its own right:

Definition 18 The adjoint bundle of a parabolic geometry (P, π,M, ω) is the asso-
ciated Tractor bundle to the P -PFB determined by the adjoint representation (Ad, g)
of G, restricted to P :

A(M) = P ×(P,Ad) g. (2.32)

A(M) has a natural bracket {, }A induced pointwise by the bracket of g. Moreover,
P -invariance of the filtration (2.11) allows us to translate this filtration to A(M),
giving it the structure of a filtered Lie algebra bundle. Letting Ai(M) = P ×(P,Ad)

(gi), for −k ≤ i ≤ k, the filtration is given by:

A(M) = A−k(M) ⊃ A−k+1(M) ⊃ . . . ⊃ Ak(M) ⊃ {0}. (2.33)

From this filtration, we can define the associated graded adjoint bundle grA(M):

grA(M) := (A−k(M)/A−k+1(M))⊕ . . .⊕ (Ak(M)/{0}) (2.34)
=: gr−kA(M)⊕ . . .⊕ grkA(M). (2.35)

Now, from the identification of the tangent bundle of M in (2.6) for general
Cartan geometries, and the P -module isomorphism g/p ∼= g− for our graded algebra,
we obtain from the quotient map

A(M) →(A(M)/A0(M))
∼= A−(M) = P ×P g−

a natural projection

Π : A(M) → TM. (2.36)
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This induces a filtration of TM , letting T iM = Π(Ai(M)):

TM = T−kM ⊃ T−k+1M ⊃ . . . T−1M ⊃ T 0M = {0}. (2.37)

The tangent bundle TP also has a natural filtration for a parabolic geometry, and
we note that the above described filtration on TM can equivalently be defined via
the projection TP → TM .

From the filtration (2.37), we of course can also define the associated graded
tangent bundle gr(TM):

gr(TM) := (T−kM/T−k+1M)⊕ . . .⊕ (T−1M/{0}) (2.38)
=: gr−k(TM)⊕ . . .⊕ gr−1(TM). (2.39)

Besides these filtrations given by a parabolic geometry (P, π,M, ω), we also have
a G0-PFB π0 : G0 → M , defined by G0 := P/P+. The grading of g gives rise to
a decomposition of ω, which allows us to define an algebraic bracket on gr(TM)
and to identify G0 as a reduction of the adapted frame bundle of gr(TM) to the
structure group G0:

Definition 19 Consider the decomposition of the Cartan connection

ω = ω−k + . . .+ ωk (2.40)

given by the |k|-grading on g. The soldering pre-form induced by the parabolic
geometry is a k-tuple θ of partially defined one-forms on G0:

θ = (θ−k, . . . , θ−1), (2.41)

where each θi ∈ Γ((T iGo)∗ ⊗ gi) is defined as follows for −k ≤ i ≤ −1: For
ξ0 ∈ T iu0

G0, choose ξ ∈ T iuP with (π+)∗ξ = ξ0, where π+ : P → G0 is the obvious
projection. Then

θi(ξ0) := ωi(ξ). (2.42)

It follows from the properties of the Cartan connection that the soldering pre-
form θ is well-defined. Moreover, it is G0-equivariant and horizontal (cf. Sections
3.2 and 4.1 of [21]), and so induces a k-tuple of partially defined one-forms on M .
Each component θi of the soldering pre-form induces a linear isomorphism, for all
x ∈M :

θi : T ixM/T i+1
x M

∼=→ gi. (2.43)

This gives a reduction to G0 of the structure group of the associated graded
tangent bundle gr(TM). An algebraic bracket {, }g0 is defined on gr(TM) via this
G0-structure. Explicitly, for X ∈ (T ixM/T i+1

x M) and Y ∈ (T jxM/T j+1M), define

{X,Y }g0 := θ−1
i+j([θi(X), θj(Y )]g) ∈ (T i+jM/T i+j+1M) (2.44)

The problem is the bracket defined by (2.44) does not have an evident, natural
meaning in terms of a geometry on M . On the other hand, there is a tensorial
map, called the generalized Levi-form, defined as follows: Let x ∈ M , Xx ∈ T ixM
and Yx ∈ T jxM for −k ≤ i, j ≤ −1. Then take X and Y to be local vector fields
extending Xx and Yx, respectively. Then

L : T ixM ⊗ T jxM → TxM/T i+j+1
x M, (2.45)

L : (Xx, Yx) 7→ [X,Y ](x) + T i+j+1
x M (2.46)
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is a well-defined map, determining the generalized Levi-form.

In order to relate this naturally defined bracket on the filtered bundle TM to
the algebraic bracket, we need to make use of natural decompositions of the Cartan
curvature of a parabolic geometry. First, note that the adjoint bundle and its
natural projection (2.36) to the tangent bundle, allow us to identify the Cartan
curvature form Kω ∈ Ω2(M ; g) with a P -equivariant function in the P -module
C2(g−, g). We have:

Ω2(M ; g) = Γ(Λ2(T ∗M)⊗ (P ×P g)) ∼= Γ(P ×P (Λ2(g/p)∗ ⊗ g)).

Thus the curvature form Kω corresponds to a P -equivariant smooth function
on P with values in the P -module Λ(g/p)∗ ⊗ g = C2(g/p, g). This function, which
we’ll denote by κω, can also be explicitly determined, for all X,Y ∈ g/p, by:

κω(u)(X,Y ) = Kω(ω(u)−1(X), ω(u)−1(Y )). (2.47)

Definition 20 For a parabolic geometry, consider the decomposition of the curva-
ture function κ on P with values in Λ2(g−)∗ ⊗ g,

κ = κ− + κ0 + κ+, (2.48)

given by the decomposition g = g− ⊕ g0 ⊕ g+. The Cartan connection is said to be
torsion-free if κ− vanishes identically.

Now consider the decomposition of κ by homogeneity,

κ =
3k∑

l=−k+2

κ(l), (2.49)

where κ(l) has homogeneity l, i.e. κ(l)(u)(gi, gj) ⊂ gi+j+l. The Cartan connection
is said to be regular if its curvature has strictly positive homogeneity, i.e. if κ(l) = 0
for all l ≤ 0.

The Cartan connection is normal if

∂∗ ◦ κ = 0, (2.50)

where ∂∗ : C2(g−, g) → C1(g−, g) is the codifferential given by the formula (2.29).

Note, in particular, that a torsion-free connection is automatically regular. The
following Lemma (cf. Lemma 2.7 of [22]) clarifies the relationship between the
brackets introduced above and shows the role the Cartan connection and its curva-
ture play:

Lemma 21 Let (P, π,M, ω) be a parabolic geometry with curvature κ. The gener-
alized Levi-form L defined by (2.46) is compatible with the filtration of the tangent
bundle (2.37) if and only if κ(l) vanishes for all l < 0. Moreover, the bracket induced
on gr(TM) by the Levi-form coincides with algebraic bracket {, }g0 if and only if
the Cartan connection is regular.

In summary, a parabolic geometry (P, π,M, ω) of type (G,P ) with regular Car-
tan connection induces what is called a regular infinitesimal flag structure of type
(g, p) on the base manifold M (cf. 2.7 of [22]):
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Definition 22 Given a standard, effective parabolic pair (G,P ) and a manifold M
of dimension n = dim(g/p), a regular infinitesimal flag structure of type (g, p) is a
filtration of the tangent bundle TM together with a reduction of the structure group
of the associated graded tangent bundle gr(TM) to G0

∼= P/P+, giving a pointwise
Lie algebra isomorphism of (gr(TM), L) with g− ∼= g/p.

The fundamental theorem of parabolic geometry says that for essentially all
standard, effective parabolic pairs (G,P ), there is a converse to the construction
given above, associating to every regular infinitesimal flag structure a parabolic
geometry which is canonical up to isomorphism:

Theorem 23 Let (G,P ) be a standard, effective parabolic pair with Z(G) trivial,
and such that H1

l (g−, g) is trivial for all l > 0. Then there is a bijective correspon-
dence between the isomorphism classes of regular, normal parabolic geometries of
type (G,P ) and regular infinitesimal flag structures of type (g, p) on M .

For a proof of this Theorem, see Section 3 of [21], where the authors also in-
dicate how to handle the exceptional parabolic geometries corresponding to those
pairs with non-vanishing positive first cohomology group. The class of regular, nor-
mal parabolic geometries satisfying the premises of the Theorem as stated is however
sufficiently large for our purposes. Among others, it includes conformal structures
(see Chapter 3.1) as well as CR-structures and quaternionic contact (QC) structures
(see Chapter 4.1).

Finally, we mention that the restriction thatG have trivial center in the Theorem
may also be weakened to groups with finite center. Either one may work locally, in
which case any such G may be considered by taking finite coverings, or else globally
by introducing topological restrictions on M . We will see how this is dealt with for
the particular geometries dealt with in the sequel.

2.4 Weyl structures

The original notion of a Weyl structure for general parabolic geometries is due to
Čap and J. Slovák in [22]; a different but (in our setting) equivalent approach was
later developed in [12]. We will make use of both, motivating the structures at first
in the sense of [12].

An algebraic Weyl structure for a parabolic pair (G,P ) – defined as a choice of
splitting of the sequences (2.16) – may equivalently be viewed as a choice of lift of
the grading element. Consider, in particular the exact sequence from the “middle”
of the filtration:

0 → p+ → p
π+→ (p/p+) → 0 (2.51)

= 0 → g1 → g0 π+→ g0 → 0. (2.52)

Then since gr(g) is graded, there exists a unique grading element ε0 ∈ g0. Let

w := {ε ∈ g0|π+(ε) = ε0} (2.53)

be the set of all lifts of the grading element with respect to (2.52).

Proposition 24 (cf. Lemma 2.5 of [12]) Each element of w is precisely an alge-
braic Weyl structure. Moreover, the group P+ = exp p+ acts freely and transitively
on w.
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A (geometric) Weyl structure for a parabolic geometry (P, π,M, ω) of type
(G,P ) is, conceptually, the “bundle-ization” of a choice of algebraic Weyl struc-
ture. Since the grading element ε0 ∈ p/p+ = g0 is canonical, it induces a canonical
grading section E0 of the grade zero component

gr0A(M) = P ×P (p/p+)

of the associated graded adjoint bundle grA(M).

Definition 25 (cf. Definition 3.2 of [12]) A (geometric) Weyl structure E on M
is a smooth lift of E0 to a section of A0(M), with respect to the exact sequence:

0 → A1(M) → A0(M) → gr0A(M) → 0. (2.54)

Note that this sequence really is the bundle-ization of the algebraic sequence
(2.52):

(2.54) = P ×(P,Ad) (0 → g1 → g0 → g0 → 0).

From Proposition 24, it is evident that a choice of algebraic Weyl structure may
also be bundle-ized by choosing a P -invariant smooth function

E : P → w. (2.55)

A function E as in (2.55) induces a P -equivariant isomorphism

E• : P × (g− ⊕ g0 ⊕ g+) → P × g, (2.56)

which – recalling the isomorphisms T ∗M ∼= A1(M) and TM ∼= A(M)/A0(M) – in
turn induces a bundle isomorphism:

E• : TM ⊕Gr0A(M)⊕ T ∗M → A(M). (2.57)

On the other hand, if an algebraic Weyl structure ε for (G,P ) is fixed, then a
function E as in (2.55) may be written as E = (Adq)ε for a uniquely determined,
P -invariant function

q : P → P+. (2.58)

Now, a function q as in (2.58) is evidently equivalent to a P -invariant trivial-
ization of the P+-PFB π+ : P → G0. Since an algebraic Weyl structure is fixed,
this identifies G0 as a subgroup of P . In particular, we have the following original
definition of a Weyl structure from [22]:

Definition 26 Given a fixed algebraic Weyl structure for a parabolic pair (G,P ),
a Weyl structure for a parabolic geometry (P, π,M, ω) of type (G,P ) is a G0-
equivariant section σ of the projection

π+ : P → G0.

Proposition 27 Given a fixed algebraic Weyl structure, there is a natural bijection
between the Weyl structures of Definition 25 and those of Definition 26. Moreover, a
Weyl structure is equivalently determined by any of the information given in (2.55),
(2.56) or (2.57).
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Proof: The equivalence of Definitions 25 and 26 is given in Proposition A.1 of [12].
The equivalence of Definition 25 and the object (2.55) follows from the correspond-
ing equivalence at the algebraic level, cf. Remark 3.3 of [12]. On the other hand,
it’s clear that an equivariant isomorphism (2.56) determines a grading section of
A0(M), as the first component of E•, which maps P onto itself, may be taken by
equivariance to be the identity. Finally, such an equivariant isomorphism is equiv-
alent to a bundle isomorphism as in (2.57). 2

The different expressions for a Weyl structure are useful for different purposes,
and since we always will work with fixed algebraic Weyl structures, we shall use them
interchangeably. Now we want to introduce some of the properties and geometry
of Weyl structures, in terms of Definition 26, following [22]. First the existence is
clarified (cf. Proposition 3.2 of [22]):

Proposition 28 Weyl structures exist for any parabolic geometry (P, π,M, ω).
Moreover, if σ and σ̂ are two Weyl structures, then there exists a unique smooth
section Υ = (Υ1, . . . ,Υk) of

gr1A(M)⊕ . . .⊕ grkA(M) = gr(T ∗M)

such that

σ̂(u) = σ(u) exp(Υ1(u)) . . . exp(Υk(u)). (2.59)

Finally, each Weyl structure σ and section Υ define another Weyl structure via
(2.59).

A Weyl structure σ : G0 → P gives a reduction of the P -PFB P to the struc-
ture group G0. In particular, the pullback σ∗ω of the Cartan connection is a G0-
equivariant form

σ∗ω ∈ Ω1(G0, g). (2.60)

Since G0 preserves the grading of g, we can decompose this and get, for each −k ≤
i ≤ k, a well-defined, G0-equivariant one-form

σ∗ωi ∈ Ω1(G0; gi).

Proposition 29 For a Weyl structure σ, define θσ := σ∗ω−, ωσ := σ∗ω0 and
Pσ := σ∗ω+. Then ωσ defines a G0 principal bundle connection on G0, while θσ

and Pσ are both horizontal and G0-equivariant, and thus induce the soldering one-
form

θσ ∈ Ω1(M ; gr−kA(M)⊕ . . .⊕ gr−1A(M)), (2.61)

which induces an isomorphism

TM ∼= gr−kA(M)⊕ . . .⊕ gr−1A(M) ∼= gr(TM); (2.62)

and the Rho-tensor

Pσ ∈ Ω1(M ; gr(T ∗M)). (2.63)

For these properties, which follow pretty directly from the definitions, see 3.3
and 3.4 of [22]. We note that, using the expression for a Weyl structure given in
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(2.56), it is possible to give a P -invariant lift of the above decomposition of the
Cartan connection, cf. Appendix A of [12]:

E−1
• ◦ ω = ωg− + ωg0 + ωg+ (2.64)

= π∗θσ + π∗+ω
σ + π∗Pσ. (2.65)

The prototypical example of a Weyl structure on a parabolic geometry, is given
by a choice of a particular semi-Riemannian metric g in a conformal class, as is
described in Chapter 3.1. Given one such fixed metric, clearly any other metric g̃
in the conformal class is determined by a scale, i.e. g̃ = e2φg for some φ ∈ C∞(M).
This notion of scales can in fact be extended to Weyl structures for all parabolic
geometries:

Definition 30 An element ελ ∈ z(g0) is called a scaling element if and only if ελ
acts by a nonzero real scalar on each G0-irreducible component of g+. A bundle of
scales is a principal R+ bundle

πλ : Lλ →M

which is associated to G0 via a homomorphism λ : G0 → R+, whose derivative is
given by λ′(A) = Bg(ελ, A) for some scaling element ελ ∈ z(g0).
Given a choice of a bundle of scales Lλ, a (local) scale on M is a (local) smooth
section of Lλ.

Proposition 31 Let G be a semisimple Lie group, whose Lie algebra g is endowed
with a |k|-grading. Then the following holds:
1. There are scaling elements in z(g0).
2. Any scaling element ελ ∈ z(g0) gives rise to a canonical bundle Lλ of scales over
each manifold endowed with a parabolic geometry of the given type.
3. Any bundle of scales admits global smooth sections, i.e. there always exist global
scales.

For the proof, see 3.7 of [22]. In particular, the first statement follows since the
grading element ε0 ∈ z(g0) can be taken as a scaling element. Important properties
of bundles of scales for Weyl structures are summarized in the following Lemma (cf.
Lemma 3.8 of [22]):

Lemma 32 Let σ : G0 → P be a Weyl structure for a parabolic geometry (P, π,M, ω)
and let Lλ be a bundle of scales. Then:
1. The Weyl connection ωσ ∈ Ω1(G0, g0) induces a principal bundle connection on
the bundle of scales Lλ.
2. Lλ is naturally identified with G0/ker(λ), the orbit space of the free right action
of the normal subgroup ker(λ) ⊂ G0 on G0.
3. The form λ′ ◦ ωσ ∈ Ω1(G0) descends to the connection form of the induced prin-
cipal bundle connection on Lλ = G0/ker(λ).
4. The composition of λ′ with the curvature form of ωσ descends to the curvature
of the induced connection on Lλ.

A fundamental feature of Weyl structures for parabolic geometries, is that they
can be determined completely in terms of objects on a bundle of scales. In particular,
the principal bundle connection given by the first statement of Lemma 32 completely
determines the Weyl structure, and this moreover leads to a description of the
Cartan bundle of the parabolic geometry in terms of scales. In order to state this
result, which is Theorem 3.12 of [22], we first need a general fact, cf. 17.4 of [39]:
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Lemma 33 Let p : E → M be any principal fiber bundle. Then there exists a
bundle qp : QE → M whose sections are exactly the principal bundle connections
on E.

Theorem 34 Let (P, π,M, ω) be a parabolic geometry and let Lλ be a bundle of
scales. Then:
1. The induced principal bundle connection on Lλ from statement (1) of Lemma 32
defines a bijective correspondence between the set of Weyl structures and the set of
principal connections on Lλ.
2. There is a canonical isomorphism

P ∼= π∗0QLλ

where π0 : G0 →M is the projection map. Under this isomorphism, the choice of a
Weyl structure σ : G0 → P is the pullback of the principal bundle connection on the
bundle of scales Lλ, viewed as a section of the bundle

qπλ : QLλ →M.

Moreover, the principal action of G0 is the canonical action on π∗0QLλ induced from
the action on G0, while the action of P+ is given by:

∇̂ξs = ∇ξs+
∑

‖j‖+l=0

(−1)j

j!
(ad(Υk)jk ◦ . . . ◦ ad(Υ1)j1(ξl)) • s, (2.66)

for ∇ a connection on the canonical line bundle Lλ associated to Lλ, s a section of
this line bundle, (Υ1, . . . ,Υk) ∈ g1 ⊕ . . . ⊕ gk, j = (j1, . . . , jk) a multi-index, and
ξ ∼ (ξ1, . . . , ξk) ∈ gr−1A(M) ⊕ . . . ⊕ gr−kA(M) determined by the soldering form,
and • denotes the action of g0 on the line bundle.

In particular, given this result it makes sense to distinguish certain Weyl struc-
tures by the properties of the induced principal bundle connection:

Definition 35 Let a bundle Lλ of scales be fixed for a parabolic geometry (P, π,M, ω).
A Weyl structure σ : G0 → P is closed if the induced principal bundle connection
on Lλ (or equivalently the induced linear connection ∇ on Lλ) is flat.

A Weyl structure is exact if its associated principal bundle connection on Lλ arises
from a global smooth section of Lλ.

These sub-classes are well-defined, as a result of Theorem 34, and it’s also clear
that every exact Weyl structure is automatically closed, since a principal bundle
connection arising from a global smooth section automatically has trivial holonomy
and is thus flat. The space of closed Weyl structures is an affine space modeled on
the space of closed one-forms on M , while the exact Weyl structures form an affine
space modeled on the exact one-forms on M , cf. 3.13 of [22].

Finally, the holonomy of the Weyl connection of an exact Weyl structure is
automatically contained in ker(λ) ⊂ G0. For example, in (oriented) conformal
geometry, the exact Weyl structures are exactly those corresponding to a globally
defined metric in the conformal class, whose Weyl connection automatically has
holonomy contained in SO(p, q) ∼= ker(λ). For closed Weyl structures, one has
analogous local properties.
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2.5 Harmonic curvature

For our later results on special conformal holonomy (especially in Chapter 4.2),
we’ll need one more tool from the theory of general parabolic geometries. Har-
monic curvature allows us to use facts about the Lie algebra cohomology group
H2(g−, g) and its irreducible components, which are computable using Kostant’s
generalization of the Bott-Borel-Weil Theorem (BBW), to in many cases conclude
that certain components of the Cartan curvature vanish.

Let (P, π,M, ω) be a regular and normal parabolic geometry of type (G,P ),
with curvature function κ. Then we have the Bianchi identity (cf. Proposition 4.9
of [21]):

Proposition 36 The curvature function κ satisfies the equation

(∂ ◦ κ)(X,Y, Z) +
∑
cycl

(κ(κ−(X,Y ), Z) + X̃κ(Y, Z)) = 0 (2.67)

for all X,Y,X ∈ g−, where ∂ is the Lie algebra derivative,
∑
cycl denotes the sum

over cyclic permutations of (X,Y, Z), and X̃ = ω−1(X) ∈ Γ(TP).

A corollary of the Bianchi identity, proved by splitting the equation (2.67) into
homogeneous parts, is (cf. Corollary 4.10 of [21]):

Corollary 37 For (P, π,M, ω) and κ as above, let κ =
∑3k
l=1 κ

(l) be the splitting of
the curvature into homogeneous components. Then ∂ ◦κ(1) is identically zero. More
generally, if κ(j) is identically zero for all j < i, then ∂ ◦ κ(i) is identically zero.

Thus, since also ∂∗ ◦ κ(l) = 0 by normality, the isomorphism (2.28) allows us to
identify κ(u) with an element of the second cohomology group H2(g−, g) ∼= Ker(2),
for all u ∈ P. In general, we define:

Definition 38 The harmonic curvature function κH is the image of κ under the
map

ker(∂∗) → ker(∂∗)/im(∂∗) ∼= H2(g−, g).

The harmonic curvature is a much easier object to deal with than the full curva-
ture, and yet it often provides quite a bit of information. For example, in conformal
geometry the harmonic curvature of the canonical Cartan connection just corre-
sponds to the (classical) Weyl curvature tensor, cf. Chapter 3.1. In general, as
a result of Kostant’s Theorem (see below), the second cohomology group may be
viewed either as a P -module with trivial P+-action, or a G0-module. Thus, we may
form the associated natural vector bundle, which can be viewed as associated to
either P or G0:

H2(M) := P ×(P,ρ̄) H
2(g−, g)

∼= G ×(G0,ρ̄) H
2(g−, g),

and κH ∈ Γ(H2(M)).

The following (cf. Proposition 4.12 of [21]) generalizes the classical result for
conformal geometry, that vanishing of the Weyl curvature is a sharp obstruction for
local conformal flatness:
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Proposition 39 Let (P, π,M, ω) be a normal, regular parabolic geometry of type
(G,P ). Then the following are equivalent:
1. The Cartan bundle is flat.
2. The harmonic curvature function κH vanishes.
3. The mapping g → Γ(TP) given by X 7→ X̃ is a homomorphism of Lie algebras.
4. M is locally isomorphic to G/P .

To get restrictions on the harmonic curvature, we need to use Kostant’s gen-
eralization of BBW to compute the irreducible components of H2(g−, g). For a
useful guide to computing Lie algebra cohomology, using Kostant’s result and the
approach via Dynkin diagrams due to [3], see [57] (for the complex case) and [58]
(for real cohomologies). Alternatively, an online version of the algorithm due to
the same author can be found at www.math.muni.cz/~silhan/lac. Using this,
the relevant cohomology components (and many others) for lower dimensions can
be quickly determined by inputting the Dynkin/Satake diagram description of the
infinitesimal parabolic pair. We present here the basic ingredients for the statement
of Kostant’s result and the application using these algorithms.

Consider, as for Definition 13, a Cartan algebra c for g and a choice of simple,
positive roots ∆0 ⊂ ∆+ ⊂ ∆(c, g) for this Cartan subalgebra, and let Σ ⊆ ∆0 be
a subset corresponding to the standard parabolic subalgebra p ⊂ g. By definition,
irreducible representations of p are irreducible representations of g0 with the trivial
action of p+. Weights of p can be represented with labeled Dynkin/Satake diagrams
of g, where all coefficients over non-crossed nodes are integers. A weight is dominant
for p (and thus corresponds to an irreducible p-representation) if and only if the
coefficients over non-crossed nodes are all non-negative. Then we have:

Definition 40 The Weyl group W is the group generated by simple reflections, i.e.
reflections corresponding to simple roots α ∈ ∆0.
For an element w ∈W , the number of positive roots α ∈ ∆+ which are transformed
to w(α) ∈ ∆− := −∆+ is called the length of w.
The subset W p ⊆ W consists of all elements of the Weyl group which map weights
dominant for g into weights dominant for p. Equivalently, W p is the set

W p = {w ∈W |Φw := w(∆−) ∩∆+ ⊆ ∆(p+)}.

Now, given a representation ν : g → gl(V ) and its restriction π = ν|p+ , we get a
natural representation

β : p → gl(Hom(Λnp+, V )).

This factorizes to a representation

β̄ : p → gl(Hn(p+, V )),

where Hn(p+, V ) are the standard cohomology groups for the chain complex with
chain groups Cn(p+, V ) := Hom(Λnp+, V ). Part of Kostant’s result is that this
representation is completely reducible, and thus we may consider just its restriction

β̄ : g0 → gl(Hn(p+, V )).

Theorem 41 ([40], Kostant’s generalization of BBW) For the finite dimen-
sional representation ν : g → gl(V ) with the highest weight λ and the restric-
tion π = ν|p, the irreducible components of β̄ are in bijective correspondence with
the set W p and the multiplicity of each component is one. The highest weight
of the irreducible component of the representation β̄ corresponding to w ∈ W p is
w.λ = w(λ + ρ) − ρ and it occurs in degree |w|. The generator of this component
(the vector of the highest weight) is Λα∈Φw

gα → swλ, where swλ ∈ V is a weight
vector of the weight wλ.
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For our purposes, i.e. for computing H2(g−, g), we use the representation
ad|g− : g− → g. Since g− ∼= (p+)∗ and the adjoint representation is self-dual,
we have H2(g−, g) ∼= (H2(p+, g))∗. The relevant information on this cohomology
group is given as we deal with each case (cf. Chapters 3.1, 4.1, respectively).

Finally, we cite a result generalizing Proposition 39, which allows us, even in
cases where κH as a whole is non-vanishing, to draw conclusions about the values
of the curvature function κ based on the vanishing of certain components of κH .
Together with the algorithm for computing the irreducible components ofH2(g−, g),
this gives very useful tools, which we’ll make use of especially in the computations of
normality in Chapter 4.2. As opposed to Proposition 39, which follows rather easily
from the Bianchi identity, the proof of the following Proposition (cf. Corollary 3.2
of [13]) requires techniques of curved BGG sequences (cf. [11] or [24]) which are
beyond the scope of this work.

Proposition 42 Let E ⊂ ker(∂∗) ⊂ C2(g−, g) be a P -module, and set E0 := E ∩
ker(2). If either the Cartan connection is torsion-free, or 2(E) ⊂ E and E is stable
under E-insertions, then κH ∈ E0 implies that also κ ∈ E.

The definition of stability under E-insertions for a P -module is rather technical,
cf. Definition 3.2 of [13]. But it is easy to verify that the module Λ2(g−, p) satisfies
the condition, and this is the only case which we’ll need in practice. In other words,
Proposition 42 implies, in particular, that if the harmonic curvature is torsion-free,
then the full curvature is also torsion-free.
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Chapter 3

Conformal holonomy

3.1 Conformal geometry as a parabolic geometry

The starting point for describing conformal geometry as a parabolic geometry is the
homogeneous model space G/P . This is the Möbius sphere (Sp,q, c) with the stan-
dard conformal structure, which in Riemannian signature is just the usual n-sphere
with the conformal structure induced by the standard metric.

To describe this conformal manifold as a homogeneous space, consider first the
pseudo-Euclidean space of signature (p+ 1, q + 1)

(Rp+1,q+1, <,>p+1,q+1),

with a basis {e0, . . . , ep+q+1} such that the metric <,>p+1,q+1 is given by the
quadratic form

I1,1
p,q :=

 0 0 1
0 Ip,q 0
1 0 0

 , (3.1)

where Ip,q is the standard quadratic form of signature (p, q).

Let Cp,q ⊂ Rp+1,q+1 be the real light cone, i.e. the hypersurface consisting of
those non-zero vectors which are null with respect to <,>p+1,q+1, and let

p : Cp,q → RP(Cp,q) =: Sp,q

be the real projectivization map. The conformal Möbius sphere is this space to-
gether with the conformal structure induced as follows: Choose a smooth section
σ ∈ C∞(Sp,q, Cp,q0 ) of the projectivization map with values in a fixed connected
component of the light cone, and let gσ := σ∗ <,>p+1,q+1.

This defines a metric of signature (p, q) on Sp,q, and any other such section
differs by a positive-valued smooth function, inducing another metric in the con-
formal class. It is a classical result that the automorphism group of this conformal
manifold is G := PSO(p+ 1, q+ 1) (the quotient of SO(p+ 1, q+ 1) by its center),
and that it is locally conformally flat. Thus, G/P is a homogeneous model space
for conformal geometry of signature (p, q), if we let P be the stabilizer of any real
isotropic (i.e. null) line in Rp+1,q+1.

To see the parabolic structure of conformal geometry, we give an explicit grading
of the Lie algebra g = so(p+1, q+1). For this, take P = stabG(LR), for LR := Re0
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the real span of the first standard basis vector of Rp+1,q+1 (the form of I1,1
p,q is chosen

so that this, ”extra” basis vector will be null). Then it is straightforward to see
that

g = g−1 ⊕ g0 ⊕ g+1

gives a |1|-grading of g corresponding to the parabolic subalgebra p = g0 ⊕ g+1,
where:

g−1 = {g−1(X) :=

 0 0 0
X 0 0
0 −Xψt 0

 |X ∈ Rp,q}; (3.2)

g0 = {g0(a,A) :=

 a 0 0
0 A 0
0 0 −a

 | a ∈ R, A ∈ so(p, q)}; (3.3)

g+1 = {g+1(Z) :=

 0 Z 0
0 0 −Zψt
0 0 0

 |Z ∈ (Rp,q)∗}. (3.4)

We write here, e.g. Xψt for the pseudo-transpose of X: Xψt := (Ip,qX)t.

In particular, the maps g−, g0, g+ defined in (3.2), (3.3) and (3.4), respectively,
give an isomorphism

g ∼= Rp,q ⊕ co(p, q)⊕ (Rp,q)∗.

So a regular infinitesimal flag structure of type (g, p) on a manifold M of dimension
n = p + q, is just the vacuous filtration on TM (regularity is also vacuous, as is
always the case for |1|-gradings), together with a reduction of the frame bundle
GL(M) to a structure group G0 with Lie algebra g0

∼= co(p, q). This is nothing but
a conformal structure on M .

Note that there is a choice here of what group to take, from non-oriented confor-
mal structures, to time- and/or space-oriented conformal structures, or even con-
formal spin structures. These correspond to choosing different groups G0, which
also effects the group G, as was mentioned at the end of Chapter 2.3. We see
here how different topological obstructions – vanishing of certain Whitney classes,
etc. – come into play if one asks for a particular group G. We will generally as-
sume maximal orientability, i.e. the existence of a reduction of the frame bundle to
CO0(p, q) = R+ o SO0(p, q). Then we can take G to be SO(p + 1, q + 1), and for
holonomy theory (where it’s practical to restrict to connected conformal holonomy
groups) we will even have a reduction to the orthogonal group preserving fixed space
and time orientations SO0(p+ 1, q + 1).

From Theorem 23 we have for a conformal manifold (M, c) of signature (p, q),
a normal Cartan geometry (P, π,M, ω) of type (G,P ) as above, which is (up to
isomorphism) canonical. As mentioned in Chapter 2.4, a choice of metric in the con-
formal class determines a (exact) Weyl structure for the parabolic geometry: Given
g ∈ c, we have a principal connection on the conformal frame bundle G0, namely
that induced by the Levi-Civita connection for g, ωLC(g). This induces a principal
bundle connection on any bundle of scales, which via pull-back by π0 as explained
in Chapter 2.4 induces a Weyl structure σ(g) : G0 → P. Since Hol(ωg) ⊆ SO0(p, q),
the induced connection on the bundle of scales must come from a global trivializa-
tion, so σ(g) is exact.
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Using a choice of metric g ∈ c and its induced Weyl structure, in fact we can
describe the normal Cartan connection for (M, c) in terms of geometric quantities
of g. The derivation of the following formulae from the point of view of the pro-
longation construction of a canonical Cartan geometry in the conformal setting, is
discussed in section 3.3 of [4] with reference to [24]:

Proposition 43 Let (M, c) be a maximally oriented conformal manifold of sig-
nature (p, q) and let (P, π,M, ω) be the normal parabolic geometry of type (G,P )
determined by it. Then for a metric g ∈ c and the associated Weyl structure σ(g),
we have:

θσ(g) = θ[g]; (3.5)

ωσ(g) = ωLC(g); (3.6)

Pσ(g) = Pg. (3.7)

Here, Pg denotes the classical Schouten- or Rho-tensor of conformal geometry:

Pg =
1

n− 2
(

1
2(n− 1)

Rgg −Ricg).

The most important Tractor bundles for conformal geometry are the adjoint
bundle A(M) as introduced above for general parabolic geometries, and the stan-
dard Tractor bundle: Let ρ : G = SO(p+ 1, q + 1) → GL(Rp+q+2) be the standard
representation, then the standard Tractor bundle in conformal geometry is:

T (M) := P ×(ρ,P ) Rp+q+2. (3.8)

Since P ⊂ G preserves the metric <,>p+1,q+1, the vector bundle T (M) inherits
a metric of signature (p+ 1, q + 1), denoted by <,>T . It also follows this metric is
parallel with respect to the Tractor connection ∇T , defined via the principal Trac-
tor bundle (G, π̄,M, ω̄).

Furthermore, T (M) inherits a filtration, from the P -invariant filtration of Rp+q+2:

Rp+q+2 ⊃ (LR)⊥ ⊃ LR ⊃ {0}.

The filtration on T (M) is given by:

T (M) = T −1(M) ⊃ T 0(M) ⊃ T 1(M)

:= (P ×(ρ,P ) Rp+q+2) ⊃ (P ×(ρ,P ) (LR)⊥) ⊃ (P ×(ρ,P ) LR).

In particular, the line bundle T 1(M) is isotropic with respect to <,>T . A
non-vanishing, global smooth section α ∈ Γ(T 1(M)) induces a metric g on M
of signature (p, q). For the quotient T 0(M)/T 1(M) we have an isomorphism of
associated G0 bundles

T 0(M)/T 1(M) ∼= TM [−1],

where TM [−1] = TM ⊗ E [−1] is the conformally weighted tangent bundle, and
E [−1] is a certain density bundle, which can be naturally identified with T 1(M), cf.
section 2 of [2]. Then the section α determines an identification of TM [−1] with
a sub-bundle of T 0(M), and the restriction of <,>T to this sub-bundle is non-
degenerate, determining a metric on M . Choosing another non-vanishing global
section α′ = e2φα ∈ T 1(M) gives a metric which differs by a conformal factor.
From this description it is clear how the Cartan geometry (or its standard asso-
ciated Tractor bundle) provides a curved version of the homogeneous conformal
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structure described at the outset for Sp,q.

On the other hand, a choice of metric g ∈ c and the associated Weyl structure
σ(g), give a reduction σ(g)′ : SO0(M, g) → P to the structure group SO0(p, q).
This induces a splitting of the standard Tractor bundle:

T (M) = P ×(P,ρ) Rp+q+2

σ(g)′∼= SO0(M, g)×(SO0(p,q),ρ) (R⊕ Rp+q ⊕ R)
g∼= (M × R)⊕ TM ⊕ (M × R).

The following result gives the form of ∇T and its curvature endomorphism RT

in terms of such a splitting. From the description of the normal conformal Cartan
connection in terms of an exact Weyl structure (i.e. a metric in the conformal
class), it is a straightfroward computation using the standard representation of
SO(p+ 1, q + 1), cf. Section 3 of [44], or Proposition 10 of [4], and from this point
of view the conformal invariance is direct. On the other hand, a direct construction
of the Tractor bundle and connection was already given, based on the work of T.
Thomas and in modernized form, in section 2 of [2]. This agrees with the normal
connection, cf. [16].

Proposition 44 Let g be a metric in the conformal class and

Γ(T (M))
g∼= C∞(M)⊕ Γ(TM)⊕ C∞(M)

the corresponding splitting of sections of the standard Tractor bundle. With respect
to this splitting, the Tractor connection on T (M) induced by the canonical Cartan
connection ω of the conformal structure, has the matrix form:

∇TX =

 ∇LCX Pg(X) 0
X· ∇LCX −Pg(X)]·
0 −X∗ ∇LCX

 . (3.9)

The curvature endomorphism of ∇T has the form:

RT (X,Y ) =

 0 Cg(X,Y )∗ 0
0 W g(X,Y )• −Cg(X,Y )·
0 0 0

 . (3.10)

Here, Cg denotes the Cotton-York tensor, W g the Weyl curvature tensor of g, and
X,Y are vector fields on M .

In particular, from the matrix form (3.10) we can identify the homogeneity
components of the curvature function κ of the canonical Cartan connection of a
conformal manifold (M, c). The diagonal entries have values in g0, while the upper-
diagonal entries have values in g1. Since X1, X2 ∈ TM correspond to elements in
g− = g−1, this means that W g corresponds to κ(2) and Cg corresponds to κ(3). In
particular, we see that the canonical Cartan connection of a conformal structure is
always torsion-free.

In fact, this last fact can be determined from the cohomology group H2(g−, g)
using the techniques described in Chapter 2.5. The Satake diagram for the parabolic
pair (g, p) for conformal structures (described above) is the usual Satake diagram
for the non-compact real form g = so(p + 1, q + 1) of either B p+q+1

2
or D p+q+2

2
,
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where the first node of the diagram (which is non-compact) is crossed. Using the
algorithm in [58] or visiting the same author’s website, one sees that H2(g−, g) has
exactly one irreducible component, which is of homogeneity 2 in dimensions higher
than 3. On the other hand, in dimension 3 the Weyl curvature always vanishes and
the Cotton-York tensor gives the whole curvature. Applying this, together with
Corollary 37 and Proposition 39 gives:

Proposition 45 Let (M, c) be a conformal manifold and (P, π,M, ω) its canonical
parabolic geometry, with curvature function κ. Then ω is torsion-free, and the
harmonic curvature κH = κ(2) corresponds to the Weyl curvature tensor W . A
semi-Riemannian manifold (M, g) of dimension n is locally conformally flat if and
only if, respectively, W g (n ≥ 4), or Cg (n = 3) vanishes.

3.2 Decomposable conformal holonomy

Definition 46 Let (P, π,M, ω) be a Cartan geometry of arbitrary type (G,P ). The
holonomy group of the Cartan geometry is the holonomy group Hol(ω̄) of its prin-
cipal Tractor bundle (G, π̄,M, ω̄).
For a manifold M endowed with a regular infinitesimal flag structure of type (g, p),
the holonomy group of this geometric structure is the holonomy group of the (canon-
ical) regular, normal parabolic geometry associated to it.
In particular, for a maximally oriented conformal manifold (M, c) of signature (p, q),
the conformal holonomy group Hol(M, c) is the holonomy group of the canonical
parabolic geometry described in Chapter 3.1

We note that this definition of conformal holonomy differs slightly from that
given in other places in the literature, defined via the development map for a Cartan
geometry, cf. [56] or [4]. However, this should not lead to considerable confusion,
given the following result (cf. Proposition 1 of [4]):

Proposition 47 1. The connected component of the holonomy group given by Def-
inition 46 is isomorphic to the connected component of the holonomy group of the
Cartan geometry defined via the development map.
2. If the structure group P is connected or the base space M is simply connected,
then the full holonomy groups are isomorphic. Moreover, for any representation
ρ : G→ GL(W ) and associated Tractor bundle (W,∇W), we have an isomorphism

ρ(Hol(ω̄)) ∼= Hol(∇W)

As mentioned in Chapter 3.1, we will always assume maximal orientability of the
conformal structure, and in particular since we’re mainly interested in connected
conformal holonomy groups, this discrepancy in definitions is irrelevant. Proposi-
tion 47 also allows us to identify Hol(M, c) with the matrix group Hol(∇T ), the
holonomy group of the standard Tractor connection given, via a choice of metric
g ∈ c, by (3.9).

This last identification allows us to give the geometric meaning of decompos-
able conformal holonomy. First, consider a conformal manifold (M, c) with a one-
dimensional Hol(M, c)-invariant subspace. Since T (M) has an indefinite metric,
and ∇T respects this metric, we have as usual for linear, metric connections, a
bijection between such holonomy-invariant subspaces and recurrent Tractors, i.e.
non-vanishing sections Υ ∈ T (M) such that

∇T Υ = γΥ
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for some one-form γ ∈ Ω1(M). If a recurrent Tractor Υ has non-zero length at any
point with respect to <,>T , then it is straightforward to see that it can be locally
rescaled to a parallel section by dividing by the length. Furthermore, the standard
conformal Tractor connection has the surprising property that all recurrent Trac-
tors can locally be rescaled to parallel sections, cf. Lemma 2.1 of [43].

Thus, one-dimensionalHol(M, c)-invariant subspaces correspond to parallel stan-
dard Tractors Υ ∈ T (M). Now choose a metric g ∈ c and let

Υ =

 α
Y
β


be the representation of the parallel Tractor Υ with respect to the splitting given
by g, where α, β ∈ C∞(M) and Y is a vector field on M . From the formula (3.9),
one sees that ∇T Υ = 0 implies

Y = gradgβ;
dα = −Pg(gradgβ);
αg = βPg −Hessg(β).

Then the subset M̃ where β is non-vanishing must be dense (and open) in M , or else
Υ would vanish identically. Consider the metric on M̃ given by g̃ := β−2g ∈ c|M̃ .
A calculation using the conformal transformation rule for the Schouten tensor (cf.
p. 57 of [5]) then shows that Pg̃ is proportional to g̃, implying that (M̃, g̃) is Einstein.

Conversely, suppose g ∈ c is an Einstein metric. Then

Pg = − Rg

2n(n− 1)
g,

where Rg is the scalar curvature of g. Then defining

Υ :=

 − Rg

2n(n−1)

0
1

 , (3.11)

one sees from (3.9) that Υ is parallel. Furthermore, from the formula (3.11), we see
that the sign of the length of the parallel Tractor is the opposite that of the scalar
curvature of the Einstein metric to which it corresponds. Summarizing, we have:

Proposition 48 For a conformal manifold (M, c), Hol(M, c)-invariant lines Rv ⊂
Rp+1,q+1 invariant are in bijective correspondence to Einstein metrics g ∈ c|M̃
defined up to singularity on M . Under this correspondence, we have:

Rg > 0 ⇔< v, v >< 0;
Rg = 0 ⇔< v, v >= 0;
Rg < 0 ⇔< v, v >> 0.

So Einstein metrics have a special place in the theory of reducible conformal
holonomy. There is a decomposition theorem for conformal manifolds with so-called
decomposable holonomy, due independently to F. Leitner [44] and S. Armstrong [1].
This can be seen both as a conformal analog of the de Rham/Wu Decomposition
Theorem and a higher rank generalization of the above Proposition.
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Definition 49 A conformal manifold (M, c) is said to have decomposable holon-
omy of rank k if there exists a non-degenerate Hol(M, c)-invariant subspace V ⊂
Rp+1,q+1 with 1 < rk(V ) =: k < p + q + 1. Otherwise, (M, c) is said to have
indecomposable holonomy.

Proposition 50 (Conformal holonomy decomposition, Armstrong [1], Leitner [44])
Let (M, c) be a conformal manifold with decomposable holonomy of rank k. Then
for some open dense subset M̃ of M , (M̃, c) is locally conformally isomorphic to a
product (M̃k

1 × M̃p+q−k+1
2 , [g1 + g2]), where (Mi, gi) are Einstein manifolds whose

scalar curvatures satisfy

Rg1 = − k(k − 1)
(n− k)(n− k − 1)

Rg2 .

Moreover, for a product manifold (M̃, g) ∼= (M̃1×M̃2, g1+g2) satisfying this relation,
we have

Hol(M̃, [g]) ∼= Hol(M̃1, [g1])×Hol(M̃2, [g2]).

This decomposition result allows a more or less complete characterization of the
possible non-irreducible conformal holonomy groups in some signatures. For a max-
imally oriented Riemannian conformal manifold (Mn, c), Hol(M, c) ⊆ SO(1, n+1),
and thus we can apply the following result (cf. Theorem 2 of [28]):

Theorem 51 (Di Scala, Olmos [29]) The only connected, irreducible subgroup of
O(1, n+ 1) is SO0(1, n+ 1).

Thus, if (M, c) is non-generic, Hol(M, c) has an invariant subspace V . If V
is degenerate, then Hol(M, c) must also preserve a light-like line contained in V ,
and hence there is a Ricci-flat Einstein metric in the conformal class, defined up to
singularities. If 1 < rk(V ) < n+1, then Proposition 50 implies a local decomposition
into conformally Einstein manifolds of smaller dimension. Thus in a sense, all non-
generic conformal manifolds in Riemannian signature can be (locally) decomposed
into indecomposable conformally Einstein manifolds. These were classified in [1]
using an isomorphism between the standard Tractor bundle and a metric cone
construction on M :

Proposition 52 (Armstrong, [1]) Let (Mn, c) be a simply connected, conformally
Einstein manifold of Riemannian signature with indecomposable conformal holon-
omy, and suppose n > 3. Then the possible conformal holonomy groups (and ge-
ometries of the unique Einstein manifold given by g ∈ c) are:

1.SO0(1, n) (generic, Rg < 0);

2.SO(n+ 1) (generic, Rg > 0);

3.SO(n) o Rn (generic, Rg = 0);

4.SU(n+1
2 ) (Einstein-Sasaki, Rg > 0);

5.SU(n2 ) o Rn (Calabi-Yau, Rg = 0);

6.Sp(n+1
4 ) (3-Sasakian, Rg > 0);

7.Sp(n4 ) o Rn (Hyper-Kähler, Rg = 0);
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8.Spin(7) o R8 (Spin(7)-holonomy, Rg = 0);

9.Spin(7) if n = 7 (nearly G2, Rg > 0);

10.G2 o R7 (G2-holonomy, Rg = 0);

11.G2 if n = 6 (Nearly-Kähler, Rg > 0).

Finally, we mention that there are also results, described in [43], characterizing
the geometry of all Lorentzian conformal manifolds having non-irreducible holon-
omy. In Lorentzian signature, however, there is no classification result limiting the
irreducible subgroups which could occur as conformal holonomy groups. Irreducible
(and connected) conformal holonomy groups will be our focus in the sequel.

3.3 Transitive holonomy and Fefferman spaces

Connected, irreducible, transitive conformal holonomy groups have the benefit that
we can give a nearly complete list of them (see Chapter 3.4). In the present sec-
tion, we want to describe the geometric constructions (especially the generalized
Fefferman construction) which link such subgroups to conformal holonomy. Note
that throughout this and the following Chapters, we will always take (M, c) to
be a conformal manifold of signature (p, q), G := SO0(p + 1, q + 1) and P :=
stabG(LR) as described in Chapter 3.1. We also will sometimes need to con-
sider G′ := SO(p + 1, q + 1) and P ′ := stabG′(LR). In general, for any subgroup
H ⊆ SO(p+ 1, q + 1), we also adopt the notation convention, PH := stabH(LR).

Definition 53 A subgroup H ⊆ G′ is called transitive if H acts transitively on
Sp,q = G′/P ′.
(M, c) has transitive holonomy if Hol(M, c) ⊆ G is transitive.

Before describing the generalized Fefferman construction of conformal manifolds,
we give a conformal holonomy reduction principle, which also shows why we need
transitive subgroups:

Definition 54 Let a transitive subgroup H ⊆ SO(p+ 1, q + 1) be given. A Cartan
reduction toH of a parabolic geometry (P, π,M, ω) of conformal type (G,P ) is given
by a Cartan geometry (PH , π̃,M, ω̃) of type (H,PH) together with an inclusion
ι : PH ↪→ P such that ι∗ω = ω̃.

Proposition 55 (Conformal Cartan reduction principle)
Let H ⊂ G′ be a transitive subgroup and (P, π,M, ω) be a parabolic geometry
of conformal type (G′, P ′). There exists a Cartan reduction to H if and only if
Hol(ω) ⊆ H.

Proof: (⇒) Let (PH , ω̃) be the Cartan reduction. Since ι : PH ↪→ P gives an
inclusion, we also have an inclusion ῑ : H ↪→ G, where H = PH ×PH H is the
extension of PH to a H-PFB. But there is a unique principal bundle connection
¯̃ω on H which pulls back under the natural inclusion to the Cartan connection
ω̃. Then since ι∗ω = ω̃, applying H-equivariance one sees that ῑ∗ω̄ = ¯̃ω By the
holonomy reduction principle for principal bundle connections, it must hold that
Hol(ω) := Hol(ω̄) ⊆ H.
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(⇐) If Hol(ω) := Hol(ω̄) ⊆ H, then the standard holonomy reduction principle
gives a reduction to a H-PFB (H, ˜̄ω) of (G, ω̄), i.e.

ῑ : H ↪→ G

with ῑ∗ω̄ = ˜̄ω. Defining PH := P ∩ H, PH is clearly a principal fiber bundle over
M with structure group PH with a natural inclusion ι in P. And ω̃ := ˜̄ω|TPH

is a one-form on PH with values in h, and properties (2.1) and (2.2) of a Cartan
connection are automatic, as is ι∗ω = ω̃.

The final property (2.3) of a Cartan connection requires the transitivity of H, which
implies in particular that

g = h + p. (3.12)

The map

ω̃|TuPH : TuPH → h

is injective for all u ∈ PH , since ω̃ = ι∗ω. Comparing dimensions, dim(TuPH) =
dim(M)+dim(p∩h), while from property (2.3) for the canonical Cartan connection
we have dim(g) = dim(M) + dim(p). Thus dim(TuPH) = dim(h) if and only if
dim(g) = dim(h + p), i.e. if and only if (3.12) holds. 2

As the proof shows, it would be enough to require the slightly weaker prop-
erty (3.12) of H ⊆ G, which is called local transitivity. In particular, for any
conformal manifold (M, c) with connected holonomy, of course Hol(M, c) ⊆ G :=
SO0(p + 1, q + 1), so the Proposition says that we may take as given a parabolic
geometry of type (G,P ), which we shall do from now on.

Proposition 55 indicates why generalized Fefferman constructions may be ex-
pected to play a role in special conformal holonomy. Namely, for a parabolic ge-
ometry of type (H,Q), where H ⊂ G is a closed, (locally) transitive subgroup, and
Q ⊇ PH , the generalized Fefferman construction produces a manifold with confor-
mal structure, together with an induced Cartan geometry of conformal type which
naturally has a Cartan reduction toH. This gives a natural analog to C. Fefferman’s
construction, introduced in [31] for the smooth boundary of a pseudo-convex do-
main and subsequently generalized in [10] to arbitrary pseudo-convex CR manifolds.

It must be emphasized that this induced Cartan connection is not known in gen-
eral to be normal , even when the parabolic geometry of type (H,Q) is normal and
regular. This must be shown in specific cases in order to prove that the conformal
holonomy of the Fefferman space, which is by definition the holonomy of the normal
Cartan connection, in fact reduces to H. Before getting into this for specific cases,
we describe the general Fefferman construction due to A. Čap, cf. Section 4 of [14].

Let (Q, π′, N, ω′) be a parabolic geometry of type (H,Q), where H ⊆ G is
transitive and Q ⊇ PH . Then we can define the manifold

M := Q/PH .

In general, M fibers over N with fiber diffeomorphic to Q/PH , which we’ll denote

p : M → N.
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And by definition, Q is a PH -PFB over M , which we’ll denote by PH when thought
of this way:

π̃ : PH := Q →M. (3.13)

The Cartan connection ω′ is a Cartan one-form on PH = Q with values in h, and
it trivially satisfies the properties of a Cartan connection on PH over M of type
(H,PH), and considered in this way we’ll denote it ω̃. Summarizing, we’ve defined
an induced Cartan geometry (PH , π̃,M, ω̃) of type (H,PH).

Obviously, the notation for this induced Cartan geometry is chosen to remind
us of the Cartan reductions of Definition 54. The notation is not misleading, and in
fact we may associate to the Cartan geometry (PH , π̃,M, ω̃) a parabolic Cartan ge-
ometry (P, π,M, ω) of (maximally oriented) conformal type (G,P ). This is defined
as follows:

P := PH ×PH P ;

For u ∈ PH ⊂ P, and for ξ ∈ TuP, write ξ = ξH + ξ̃P , for ξH ∈ TuPH and ξP ∈ p,
and define

ω(ξ) := ω̃(ξH) + ξP ;

Finally, use Ad-equivariance to define ω over all points in P. The properties (2.1)
and (2.2) for a Cartan connection are automatically satisfied by ω, and the property
(2.3) follows from the transitivity of H. We summarize the results of this construc-
tion in the following Proposition, which also gives the defining properties of the
curvature functions κω and κω̃, which are clear from the definitions of ω and ω̃,
respectively:

Proposition 56 Given a parabolic geometry (Q, π′, N, ω′) of type (H,Q), where
Q ⊆ G is transitive and Q ⊇ PH , there is an induced parabolic geometry (P, π,M, ω)
of conformal type (G,P ), which induces a semi-Riemannian conformal metric c on
M . This is the (conformal) Fefferman space induced by (Q, π′, N, ω′). The con-
formal Fefferman space admits a natural Cartan reduction to H, which by Propo-
sition 55 is equivalent to Hol(ω) ⊆ H. Moreover, the curvature function κω is
characterized by the following commutative diagram, for all u ∈ PH , together with
Ad-equivariance:

g/p ∧ g/p
κω(u) - g

h/pH ∧ h/pH

∼=

?
κω̃(u) - h

∪

6

h/q ∧ h/q

?? κω
′
(u) - h

=

6

In other words, over the sub-bundle PH the curvature function κ may be con-
sidered as having values either in the P -module C2(g−, g) or in the Q-module
C2(h−, h). For calculating the normality in the next section, it is no problem to
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restrict to this sub-bundle, since ker(∂∗) ⊂ C2(g−, g) is Ad-invariant.

In particular, the curvature of the Cartan connection of the Fefferman space
must vanish on the subspace q/pH , i.e. κω̃(X,Y ) = 0 for all X ∈ q/pH ⊂ h/pH

and all Y ∈ h/pH . The final result of this Chapter shows that this condition is
also sufficient for a local converse to the conformal Fefferman construction, given
a Cartan reduction to H. This may be viewed as a generalization of G. Sparling’s
characterization of (classical) Fefferman spaces, cf. [35]:

Proposition 57 Let (P, π,M, ω) be a parabolic geometry of conformal type (G,P ),
suppose a Cartan reduction (PH , π̃,M, ω̃) is given for a transitive, semi-simple sub-
group H ⊆ G, and let Q ⊇ PH be a parabolic subgroup of H. Then (P, π,M, ω) is
locally isomorphic to the conformal Fefferman space induced by a parabolic geometry
of type (H,Q) if and only if κω̃ vanishes on the subspace q/pH .

Proof: To begin with, the identifications

TM ∼= P ×P (g/p)
∼= PH ×PH (h/pH)

induce a smooth distribution Va for every subalgebra a ⊇ pH of h, defined by

Va = PH ×PH (a/pH).

It is a straightforward result of the properties of the Cartan curvature, cf. Propo-
sition 2.5 of [13], that Va is integrable if and only if κω̃ preserves a, i.e. if and only
if

κω̃(u)(a/pH , a/pH) ⊆ a.

In particular, given the assumptions of the proposition, we get an integrable distri-
bution Vq, and given any point x ∈M there exists a neighborhood U and a smooth
submersion ψ : U → N onto the local leaf space of Vq.

Now, local isomorphism to a conformal Fefferman space as in the Proposition may
be formulated as follows: For x ∈M and ψ : U → N a local leaf space, let

π′ : Q := Q×N → N (3.14)

be the trivial Q-PFB over the local leaf space. Then for every u ∈ PH , there
must exist PH -invariant open subsets V ⊂ Q and U ⊂ PH , and a PH -equivariant
diffeomorphism

Φ : V ≈→ U

such that ψ◦ π̃◦Φ = π′ and there exists a Cartan connection ω′ on Q of type (H,Q)
such that Φ∗ω̃ = ω′.

The proposition then follows from the proofs of Proposition 2.6 and Theorem 2.7 of
[13] showing the existence of local twistor spaces for parabolic geometries under sim-
ilar assumptions. In fact, the properties we require above of the local twistor space,
do not depend in any essential way on the starting Cartan geometry being parabolic:

In the proof of Proposition 2.6 of [13], first suitable local diffeomorphisms Φ as above
are constructed between PH -invariant subsets. The key point is the existence of a
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local Q action on PH : For A,B ∈ q ⊂ h, consider the vector fields Ã, B̃ on PH
induced by ω̃ as in (2.4). Then

ω̃([Ã, B̃]) = −dω̃(Ã, B̃) = [A,B]− κω̃(A+ pH , B + pH).

The assumption of the proposition on κω̃ implies in particular that the map A 7→ Ã
gives a Lie algebra homomorphism of q into the vector fields on PH . By Lie’s sec-
ond fundamental theorem, this infinitesimal action of q on PH integrates to a local
group action of Q.

Using this local action and shrinking to sufficiently small neighborhoods U of PH
and Ṽ of e ∈ Q (for example, a smooth section of ψ ◦ π̃ : U → N must exist), Čap
then defines a diffeomorphism

Φ : Ṽ ×N → U

such that ψ ◦ π̃ ◦ Φ = π′, and satisfying

TΦ ◦ Ã = Ã ◦ Φ

for all A ∈ q, where on the left hand side, Ã denotes the fundamental vector field
on the trivial Q-PFB while on the right hand side, Ã is the vector field on PH
induced by the Cartan connection ω̃. The technical details can be read in full in
Čap’s proof, and all carry over to the situation given by the assumptions of our
proposition. Note the (potentially confusing) notational discrepancy, that our PH

corresponds to the group Q in [13], while our group Q corresponds to P there.
Otherwise, only one detail of that proof must be changed in our situation, to take
into account that our subgroup PH is not necessarily parabolic in H. Namely, the
open neighborhood V1 of zero in p ∩ q− there must be taken (with our, different
notation), to be an open neighborhood of zero in q ∩ g−.

Finally, in the proof of Theorem 2.7 of [13], the local diffeomorphisms Φ above are
used, under the assumption that κω̃(u)(X, .) = 0 for all X ∈ q/pH , to induce a
connection ω′ on the trivial Q-PFB of the local leaf space, such that Φ∗ω̃ = ω′,
extending Φ∗ω̃ to a one-form on the full Q-PFB via equivariance. This part of the
proof, establishing the local isomorphism needed in our proposition, relies in no way
on PH being parabolic in H, and we refer the reader to it for verification of the
properties of a Cartan connection. 2

3.4 On the possible irreducible transitive confor-
mal holonomy groups

This section is supplementary and not integral to the other results in our work.
Here, we indicate how one can reasonably hope to get a finite classification of the
fundamental (i.e. “irreducible”) conformal geometries. Obviously, an important
ingredient of any such classification is a finite list of possible holonomy groups. An
outline of how to determine all connected, irreducible and transitive subgroups of
SO(p+1, q+1) is presented here, making use of results from the theory of transitive
transformation groups, cf. [53].

Our strategy for generating this list is to reduce the problem to the classification
results due to [38] (cf. Section 18.6 of [53]) and [32] describing the structure of Lie
groups acting transitively on the product of two spheres. The reason these results
are relevant is the following:
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Proposition 58 For p, q ≥ 1, there is a two-fold covering of the Möbius sphere by
the product of two spheres:

Sp × Sq → Sp,q.

For p, q ≥ 2, this is the universal covering of the Möbius sphere.

Proof: The Möbius sphere Sp,q is by definition the set of all real lines in Rp+q+2

which are isotropic (null) with respect to (, )p+1,q+1, here we calculate with the
standard metric of signature (p+1, q+1). If we denote by [x] the equivalence class
of a vector x ∈ Rp+q+2 under the action of R∗ giving the real projectivization, then

Sp,q = { [x] |Rp+q+2 3 x 6= 0, (x, x)p+1,q+1 = 0}.

Now consider the space

˜Sp,q := { [[x]] |Rp+q+2 3 x 6= 0, (x, x)p+1,q+1 = 0},

where [[.]] denotes the equivalence class under the action of R+, i.e. x ∼ y iff there
exists λ ∈ R+ s.t. x = λy. Then ˜Sp,q is clearly a two-fold covering of the Möbius
sphere, and we claim ˜Sp,q ≈ Sp × Sq.

Let [[x]] = R+ · x ∈ ˜Sp,q. Then write

x = x̂+ ˆ̂x ∈ Rp+1 ⊕ Rq+1,

with (x̂, x̂)p+1 = (ˆ̂x, ˆ̂x)q+1. Then the following map is well-defined:

˜Sp,q → Rp+q+2

R+ · x 7→

√
2

(x, x)p+q+2
· x;

and from √
2

(x, x)p+q+2
=

√
2

(x̂, x̂)p+1 + (ˆ̂x, ˆ̂x)q+1

,

we have

R+ · x 7→ (
x̂

|x̂|p+1
,

ˆ̂x

|ˆ̂x|q+1

) ∈ Sp × Sq,

giving the required diffeomorphism. 2

Let H ⊆ SO(p + 1, q + 1) act transitively on Sp,q. Then a standard result, cf.
Proposition 6 in Chapter 1 of [53] says that there exists a transitive action by H̃,
the universal covering of H, on Sp×Sq, which covers the action of H on Sp,q. First
let us consider transitive subgroups of SO(p+1, q+1) for p, q ≥ 2, which turns out
to be simpler. B. Kamerich proved in his thesis [38] a classification of the transitive
and irreducible actions of compact Lie groups on the product of two spheres of this
type. Beware that “irreducible” in this context has a distinct meaning:

Definition 59 Let X be the homogeneous space of a compact, connected Lie group
K. The action of K on X is irreducible if K has no proper normal transitive
subgroup.

To emphasize this distinction, we’ll always say that a subgroup H ⊆ SO(p +
1, q + 1) acts irreducibly when we mean Definition 59, and we’ll say that such a
subgroup H is irreducible with respect to the standard representation to mean that
H leaves no proper subspace of Rp+q+2 invariant. Kamerich’s result, as presented
in [53] (Theorem 6 in Chapter 5), is as follows:
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Theorem 60 (Kamerich [38], 1977)
If G is a connected, compact Lie group acting transitively and irreducibly on Sp ×
Sq ≈ G/H, for p, q ≥ 2, then one of the following holds:

(i) G is simple and the action of G is locally similar to one of the following actions:

SU(4)/SU(2) ∼= S5 × S7;

Spin(8)/G2
∼= S7 × S7

Spin(7)/SU(3) ∼= S6 × S7;
∼= Spin(8)/SU(4)
∼= SO(8)/SO(6).

(ii) G is not simple, and the action of G = G1×G2 on Sp×Sq is split, i.e. G1 and
G2 act transitively on Sp and Sq, respectively. Then the action is locally similar to
the product of any two of the following actions:

SO(n)/SO(n− 1) ∼= Sn−1;

SU(n)/SU(n− 1) ∼= S2n−1;

Sp(n)/Sp(n− 1) ∼= S4n−1;

Spin(9)/Spin(7) ∼= S15;

Spin(7)/G2
∼= S7;

G2/SU(3) ∼= S6.

(iii) The action of G is locally isomorphic to one of the pairs, where the subgroups
H12 are described in Table 12, Chapter 5 of [53]:

(SU(2)× SU(2))/H12
∼= S3 × S2;

(SU(2n+ 1)× SU(2))/SU(2n) ·H12
∼= S4n+1 × S2;

(Sp(n)× SU(2))/Sp(n− 1) ·H12
∼= S4n−1 × S2;

(Sp(n)× SU(3))/Sp(n− 1) · Sp(1) ∼= S4n−1 × S5;

(Sp(n)× Sp(2))/Sp(n− 1) · Sp(1) ∼= S4n−1 × S7.

All of these give rise to an irreducible transitive action on a product of two spheres.

There are two obstacles to applying this result to our situation. First, this gives
a list of all compact and connected Lie groups acting transitively on Sp×Sq, while
the transitive subgroups of SO(p + 1, q + 1) which are irreducible with respect to
the standard representation, are in general non-compact. However, for p, q ≥ 2 the
product Sp × Sq is simply connected and we may apply:

Proposition 61 ([48], 1950)
Let a Lie group G act transitively on a compact, simply connected manifold. Then
all maximal compact subgroups K ⊆ G also act transitively on the manifold.

Thus we know that for any transitive subgroup H ⊆ SO(p+ 1, q+ 1), the max-
imal compact subgroup of H̃ must appear in the list of Theorem 60.

Secondly, we have to take into account that this result only lists the irreducibly
acting transitive groups. Let K be a Lie group acting transitively on a homogeneous
space X. It is a fact that there always exists a normal connected, transitively
acting subgroup G ⊆ K such that the action of G on X is irreducible. Moreover,
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classifying the irreducibly acting transitive groups leads to a classification of all
transitively acting groups as follows (cf. Proposition 3.6 of [41]): Let G ⊂ K be a
proper normal subgroup which acts transitively and irreducibly, and let L ⊂ K be
a normal complement, i.e. K = G · L. Then

L ⊆ CenSym(X)(G) = C

is contained in the group C of all permutations of X which centralize G. If we
let Gx be the isotropy subgroup of a point x ∈ X (so that X ≈ G/Gx), and let
N = NorG(Gx) be the normalizer of the isotropy subgroup in G, then there is an
isomorphism

N/Gx ∼= C. (3.15)

Hence it suffices to know all the irreducibly acting, transitive groups G and deter-
mine the G-normalizer of the corresponding isotropy group.

The following Lemma will be useful for generating our list of possible irreducible
conformal holonomy groups which acts transitively, and it is also interesting in its
own right:

Lemma 62 Let Hol(M, c) be a connected conformal holonomy group which is irre-
ducible with respect to the standard representation. Then Hol(M, c) is semisimple.

Proof: We may work at the level of Lie algebras, since Hol(M, c) is assumed to
be connected. A classical result of Cartan, cf. [52], states that irreducible real
representations of real Lie algebras are of one of two types:

Proposition 63 (Cartan, [27]) Let ρ : g → sl(V ) be an irreducible representation
of a real Lie algebra g on a real n-dimensional vector space V . Then either
(I) The complexification

ρC : g → V ⊗ C

is irreducible, in which case the complexification g(C) is an irreducible complex Lie
subalgebra of sl(V ⊗ C) ∼= sl(n,C); or
(II) The vector space V is the underlying real vector space of a complex vector
space V ′ of complex dimension n

2 , and ρ is the underlying real representation of an
irreducible complex representation

ρ′ : g → gl(V ′).

These two types are mutually exclusive.

Applying this result to our situation, we see that if the irreducible representation
given by hol(M, c) ⊆ so(p+ 1, q + 1) is not of type (I), then in particular

hol(M, c) ⊆ gl(
p+ q + 2

2
,C) ∩ so(p+ 1, q + 1) = u(

p+ 1
2

,
q + 1

2
).

But by the main result of [46], this implies that hol(M, c) ⊆ su(p+1
2 , q+1

2 ). In par-
ticular, hol(M, c) is an irreducible real Lie subalgebra of sl(p+q+2

2 ,C). This means
it is either an irreducible complex Lie subalgebra of sl(p+q+2

2 ,C) or the underly-
ing real algebra of such. In either case, the irreducible complex Lie subalgebras of
sl(m,C) are all known, also by a result of Cartan in [26], to be semi-simple, and
thus hol(M, c) is also semi-simple. This last argument also shows that all irreducible
conformal holonomy algebras hol(M, c) of type (I) must be semi-simple. 2
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Finally, we can use the above results to begin enumerating the transitive, irre-
ducible conformal holonomy groups which could appear. Let Hol(M, c) ⊆ SO(p+
1, q + 1) be a connected transitive conformal holonomy group which is irreducible
with respect to the standard representation. Taking p ≤ q and p + q > 3, suppose
that either p 6= 1 or q = 2m. The results cited above allow us to give a procedure
for enumerating all possible transitively acting conformal holonomy groups in these
signatures which are irreducible with respect to the standard representation.

The procedure for getting this list is as follows. Suppose Hol(M, c) meets the
assumptions given. Then the universal covering group H̃ of Hol(M, c) acts tran-
sitively on Sp × Sq. If p = 1 and q = 2m, then this covering must be one of
the groups in Theorem 2 of [32], but none of these has a Lie algebra which is irre-
ducible as a subalgebra of so(2, 2m+1) with respect to the standard representation.

If p ≥ 2, then by Proposition 61, the maximal compact subgroup of H̃ also
acts transitively on Sp × Sq, and therefore must be locally equivalent to one of the
transitive groups listed in Theorem 60, or else (if the maximal compact subgroup
doesn’t act irreducibly on Sp×Sq) to a compact group containing one of these as a
normal subgroup. Looking at the Lie algebras of these compact groups, we check to
see which can occur as the maximal compact subalgebra of a conformal holonomy
algebra hol(M, c) ⊆ so(p+1, q+1) which is irreducible with respect to the standard
representation on Rp+q+2.

Note that it is possible to check this in a finite number of steps, since hol(M, c)
is semisimple by Lemma 62, and the maximal compact subalgebra of a semisimple
Lie algebra is unique up to conjugation and are known by the classification of simple
real Lie algebras. In particular, since all Lie algebras corresponding to the groups
listed in Theorem 60 are either simple or the product of two simple groups, we note
that the same must hold for hol(M, c).

Thus the complete list of possibilities, for p, q ≥ 2, can be obtained by going
through the list of all real simple Lie algebras and all semisimple algebras of length
2 (i.e. direct sums of two simple Lie algebras), and seeing which have a maximal
compact subalgebra corresponding to one of the listed, transitively acting groups.
For those algebras h which do, we have to see if there exists an irreducible rep-
resentation of h on Rp+1,q+1 which embeds h as a subalgebra of so(p + 1, q + 1).
Using the methods in [52] and tables of information on simple Lie algebras and the
irreducible representations of their fundamental weights such as those in [54], this
can be done with a bit of work.

The following groups all occur, but more work needs to be done to establish
which other groups arising via Theorem 60 can be irreducibly embedded in the
appropriate SO(p+ 1, q + 1), and to exclude the others - i.e., to complete the list:
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SO0(p+ 1, q + 1);

SU(
p+ 1

2
,
q + 1

2
);

Sp(
p+ 1

4
,
q + 1

4
);

Sp(1) · Sp(p+ 1
4

,
q + 1

4
);

T · Sp(p+ 1
4

,
q + 1

4
);

SO(p+ 1,C) ⊂ SO0(p+ 1, p+ 1);
SO(p+ 1,H) ⊂ SO0(p+ 1, p+ 1);
Spin(9,C) ⊂ SO0(16, 16);
Spin(1, 8) ⊂ SO0(8, 8);
Spin(7,C) ⊂ SO0(8, 8);
G2(C) ⊂ SO0(8, 8);
Spin(3, 4) ⊂ SO0(4, 4);
G2,2 ⊂ SO0(3, 4);
Sp(n)× SU(2) ⊂ SO0(4n, 6);
Sp(n)× Sp(2) ⊂ SO0(4n, 8);
SU(2)× SU(2) ⊂ SO0(4, 5).
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Chapter 4

Fefferman spaces with special
conformal holonomy

We are now prepared to establish the conformal holonomy correspondence for the
irreducible group Sp(p′′ + 1, q′′ + 1) ⊂ SO0(p + 1, q + 1), where we adopt for this
Chapter the notation conventions p′′ := p−3

4 , q′′ := q−3
4 , n′′ = p′′ + q′′ and also,

p′ := p−1
2 , q′ := q−1

2 , n′ = p′ + q′.

By conformal holonomy correspondence, in general for any of the groups H
listed in Chapter 3.4, this means that for some parabolic subgroup Q ⊂ H and a
certain class of parabolic geometries of type (H,Q) we have the following: On the
one hand, the normal, regular parabolic geometries of type (H,Q) from this class
induce conformal Fefferman spaces with special holonomy contained in H. On the
other hand, any conformal manifold with special holonomy contained inH, is locally
isomorphic to a conformal Fefferman space of the canonical parabolic geometry of
such a structure.

This result will be proved in Chapter 4.2. Our method of proof is based on an
adaptation/generalization of that used to establish the analogous correspondence
for SU(p′ + 1, q′ + 1) in [18] and [19].

4.1 CR and QC geometry

4.1.1 The standard definitions of CR and QC structures

First, we want to introduce the parabolic geometries which will appear as the
base spaces of the conformal Fefferman space having these holonomy groups: For
SU(p′+1, q′+1), these are torsion-free (or equivalently, integrable) CR structures;
for Sp(p′′ + 1, q′′ + 1), we get quaternionic contact (QC) structures. These two
parabolic geometries can be thought of as the complex and quaternionic analogs of
conformal geometry (cf. Introduction, [6]), a viewpoint which is strengthened by
the conformal holonomy correspondences in both cases. To begin this Section, we
recall the standard notion of a CR structure, and Biquard’s definition of QC struc-
tures, and some of the geometric objects which CR and QC manifolds are equipped
with. We then describe the homogeneous model spaces and parabolic structures
associated to both.
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Definition 64 Let N be a smooth manifold of odd dimension 2n′ + 1. An almost
CR structure on N is given by a co-dimension one distribution V ⊂ TN and an
almost complex structure J on V, i.e. a tensor J ∈ V∗⊗V such that J2 = −Id. An
almost CR manifold is given by such a triple (N,V, J). An (integrable) CR manifold
is an almost CR manifold (N,V, J) such that the the Nijenhuis tensor NJ is well-
defined and vanishes: For all X,Y ∈ Γ(V), we have [JX, Y ] + [X, JY ] ∈ Γ(V),
and

NJ(X,Y ) := J([JX, Y ] + [X, JY ])− [JX, JY ] + [X,Y ] ≡ 0.

Alternatively, an almost CR structure on N may be defined as a complex sub-
bundle T 1,0 of TNC = TN ⊗ C of complex dimension n′, such that

T 1,0 ∩ T 0,1 = {0},

where T 0,1 := T 1,0. It is a standard fact this is equivalent to Definition 64, under
the following correspondence: In one direction, take V := Re(T 1,0 ⊕ T 0,1) and
J(U + Ū) := i(U − Ū); in the other direction, take T 1,0 to be the eigenspace of i for
complex-linear extension JC : V ⊗ C → V ⊗ C. The integrability condition NJ ≡ 0
is expressed in terms of the second definition as integrability of the subbundle T 1,0:

[Γ(T 1,0),Γ(T 1,0)] ⊆ Γ(T 1,0).

We will make use of this correspondence, as the different definitions are useful
for different purposes. In particular, the description of an almost CR structure
via the complex subbundle T 1,0 is useful as it gives a decomposition of alternating
forms on M , by defining

Λ1,0 := (T 0,1)⊥ ⊂ T ∗N ⊗ C;

Λ0,1 := (T 1,0)⊥;

Λr,s := Λr(Λ1,0)⊗ Λs(Λ0,1).

In particular, we have the complex line bundle K := Λn
′+1,0, called the canonical

bundle of (N,V, J).

Definition 65 Given an almost CR manifold (N,V, J), its Levi form is defined
by:

L : V × V → (TN/V)
L : (X,Y ) 7→ [JX, Y ] + V

An almost CR manifold is non-degenerate if its Levi form L is (point-wise) non-
degenerate.
A pseudo-Hermitian form for (N,V, J) is a non-vanishing one-form θ ∈ Ω1(N)
satisfying θ|V ≡ 0.

We will assume that globally defined pseudo-Hermitian forms exist for the almost
CR manifolds we consider, which is equivalent to orientability of the manifold.
Given a pseudo-Hermitian form θ, its Levi form Lθ is the real-valued symmetric
tensor given by θ ◦ L : V × V → R, and Lθ satisfies

Lθ(X,Y ) = dθ(X, JY ). (4.1)

If (N,V, J) is non-degenerate, then a pseudo-Hermitian form for it is necessarily
a contact form, i.e. θ ∧ (dθn

′
) is non-vanishing. In particular, there is a uniquely
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defined vector field ξ ∈ Γ(TN) – the Reeb vector field for θ – which is complementary
to V, defined by the conditions

θ(ξ) ≡ 1; ξydθ ≡ 0.

The Levi-form Lθ for a pseudo-Hermitian form of a non-degenerate almost CR
manifold is non-degenerate, and has a signature (p′, q′) for p′ + q′ = n′. Moreover,
we fix a positive orientation and consider only positively-oriented pseudo-Hermitian
forms, so this signature is well-defined. We call such a structure (N,V, J) a non-
degenerate almost CR manifold of signature (p′, q′). Typical examples of integrable
CR structures are given by generic real hypersurfaces of complex manifolds. Any
Sasakian manifold (M,η, g) (cf. the book [8]) induces a CR structure by varying
the contact form η by a conformal factor.

QC structures are the quaternionic analog of CR structures, cf. Definition 2.1
of [37]:

Definition 66 (Biquard [6]) A quaternionic contact (QC) structure of signature
(p′′, q′′) on a 4n′′ + 3 dimensional manifold N ′, n′′ = p′′ + q′′ ≥ 1, is the data of a
codimension three distribution V ′ on N ′ equipped with a CSp(1)Sp(p′′, q′′) structure,
i.e. we have:
i) a fixed conformal class [g] of metrics on V ′ of signature (4p′′, 4q′′);
ii) a 2-sphere bundle Q over N ′ of almost complex structures, such that, locally we
have Q = {aI1 + bI2 + cI3|a2 + b2 + c2 = 1}, where the almost complex structures
Is : V ′ → V ′, I2

s = −Id, s = 1, 2, 3, satisfy the commutation relations of the
imaginary quaternions I1I2 = −I2I1 = I3;
iii) V ′ is locally the kernel of a one-form η = (η1, η2, η3) with values in R3 and the
following compatibility condition holds:

g(X,Y ) = dηi(X, IiY ), s = 1, 2, 3, X, Y ∈ V ′. (4.2)

In dimension seven (n′′ = 1), a QC structure is additionally assumed to satisfy the
following integrability condition (cf. Definition 1.3 of [30]): There exists a local
oriented orthonormal basis (dηi|V′) of Λ2

+(V ′)∗ and vector fields ξ1, ξ2, ξ3 satisfying

ξiyηj = δij ; ξiydηj |V′ = −ξjydηi|V;. (4.3)

Note that the extra integrability in dimension seven is required to define QC
structures, since a CSp(1)Sp(1) structure is just a conformal metric structure on
V ′. In higher dimensions, the existence (and uniqueness!) of local vector fields ξi
satisfying (4.3) is automatic. We refer to these ξi as the Reeb vector fields for the
QC contact form η, in analogy to the CR case.

The canonical example of a QC structure is the sphere S4n−3, n > 1, con-
sidered as the quaternionic conformal infinity of quaternionic hyperbolic space of
dimension n, which is locally equivalent to the quaternionic Heisenberg group as
a QC manifold. Any totally umbilical, real hypersurface of a quaternionic Kähler
or hyper-Kähler manifold, naturally inherits a QC structure. Also, any locally 3-
Sasakian manifold can be considered as a QC manifold, by allowing the contact
structure to vary conformally in the obvious manner indicated by Definition 66.

4.1.2 CR and QC structures as parabolic geometries

Some more of the classical geometric objects for CR structures will be discussed
in Chapter 4.4 in relating the conformal Fefferman space of Chapter 3.3 to the
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classical Fefferman construction for CR manifolds. For more on the corresponding
constructions in QC geometry, such as the Biquard connection, cf. either [6] or [37].
In this Section, we wish to describe the realization of both of these geometries as
parabolic geometries.

To see this, and also to get a simple picture of the basic geometry behind the
Fefferman construction in these cases, we start with the homogeneous model of these
parabolic geometries. For strictly pseudo-convex CR manifolds of dimension 2n′+1,
the homogeneous model is S2n′+1, which can be viewed as the conformal infinity
of complex hyperbolic space CHn′+1 (cf. Definition B of [6]). For CR structures of
arbitrary signature (p′, q′), consider the semi-Hermitian vector space

(Cp
′+1,q′+1, <,>C

p′+1,q′+1)

of complex dimension p′+ q′+2, with the Hermitian metric <,>C
p′+1,q′+1 (abbrevi-

ated by <,>C) induced by the form I1,1
p′,q′ , cf. (3.1) in Chapter 3.1. Then, analogous

to the construction in that Chapter, we take Cp
′,q′

C to be the light cone with re-
spect to this metric, and take the homogeneous model space to be its complex
projectivization:

pC : Cp
′,q′

C → CP(Cp
′,q′

C ) =: Sp
′,q′

C .

A CR structure on this space is given naturally: For x = [v] ∈ Sp
′,q′

C , for some
v ∈ Cp

′,q′

C , take

Vx := (pC)∗(v⊥C) ⊂ TxS
p′,q′

C .

Then V defines in this way a co-dimension 1 contact distribution on Sp
′,q′

C and it can
be seen that complex multiplication on Cp′+1,q′+1 induces an integrable complex
structure J on this distribution, which has a non-degenerate Levi form of signature
(p′, q′). To see this, choose a section σ : Sp

′,q′

C → Cp
′,q′

C of the projection given by
complex projectivization; pulling back the restriction of the hermitian metric <,>C

to the complex orthogonal subspace defining V, gives a non-degenerate metric on V
of signature (p′, q′). Thus

(Sp
′,q′

C ,V, J)

defines a pseudo-convex CR manifold of signature (p′, q′). In particular, note that
in the strictly pseudo-convex case (i.e. when the Levi form is positive definite), we
have Sn

′

C = S2n′+1.

If we let H := SU(p′ + 1, q′ + 1) and let Q := stabH(LC), where LC := Ce0 is
the complex span of the first standard basis vector of Cp′+q′+2 (which is null with
respect to <,>C), then

Sp
′,q′

C = H/Q. (4.4)

However, the automorphism group of the CR manifold (Sp
′,q′

C ,V, J) is only PSU(p′+
1, q′ + 1) ∼= H/Z(H), which has H as a (p′ + q′ + 2)-fold (universal) covering since
Z(H) ∼= Zp′+q′+2. Thus, to fix H as the automorphism group of the homogeneous
geometry, we need to fix in addition to the CR structure a discrete geometric struc-
ture, and we’ll refer to the resulting geometric structure as a CR+ structure. In
the homogeneous case, this is clearly given by including the entire (tautological)
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complex line bundle over Sp
′,q′

C given via the complex projectivization map. This
bundle is a (p′ + q′ + 2)nd root of the canonical complex line bundle determined by
the CR structure.

Using this homogeneous model of CR geometry, we also get a nice geometric
picture of how the conformal Fefferman space arises from it. Namely, if we consider
Cp′+q′+2 as a real vector space, and let <,>R= Re <,>C, we get pseudo-Euclidean
space of signature (2p′ + 2, 2q′ + 2) = (p+ 1, q+ 1), and the light cone with respect
to this real background, Cp+1,q+1, is the same as Cp

′+1,q′+1
C . If we take the real

instead of the complex projectivization, this gives us the homogeneous model for
conformal geometry, Sp,q = S2p′+1,2q′+1, giving a fibration over Sp

′,q′

C with fiber
S1 ∼= Q/PH .

From the description of the pair (H,Q) above, we see that the Lie algebra h of
H is given a |2|-grading by defining:

h−2 := {h−2(ia) :=

 0 0 0
0 0 0
ia 0 0

 | a ∈ R};

h−1 := {h−1(X) :=

 0 0 0
X 0 0
0 −X̄ψ∗ 0

 |X ∈ Cp
′,q′};

h0 := {h0(a,A) :=

 a+ ib 0 0
0 A 0
0 0 −a+ ib

 | a ∈ R, A ∈ u(p′, q′), b = −1
2
trCA};

and h1 = (h−1)∗; h2 = (h−2)∗. In particular, the maps hi for −2 ≤ i ≤ 2 defined in
this way, give an isomorphism of the |2|-grading:

h = h−2 ⊕ h−1 ⊕ h0 ⊕ h1 ⊕ h2

∼= Im(C)⊕ Cp
′,q′ ⊕ (R⊕ u(p′, q′))⊕ (Cp

′,q′)∗ ⊕ (Im(C))∗.

F̌rom this we see that a regular parabolic geometry (Q, π′, N, ω′) of type (H,Q)
gives a filtration of the tangent bundle

TN = T−2N ⊃ T−1N ⊃ {0}

with T−1N an even dimensional distribution of co-dimension one, a pointwise iso-
morphism of gr(TN) to the complex Heisenberg algebra h− = Im(C)⊕ Cp′,q′ , and
a reduction of the adapted frame bundle to a structure group Q0 with Lie algebra
h0
∼= R ⊕ u(p′, q′). In particular, this gives an almost CR structure on N with by

letting V = T−1N , and taking J to be the almost complex structure on V induced
by the pointwise isomorphism V ∼= Cp′,q′ .

More precisely, as is shown in 4.14-15 of [21], regular infinitesimal flag structures
of type (h, q) correspond precisely to partially integrable almost CR structures:

Definition 67 An almost CR structure (N,V, J) is partially integrable if, for all
X,Y ∈ Γ(V), we also have

[X,Y ]− [JX, JY ] ∈ Γ(V).

It is a matter of unwinding the definitions to show that the Levi form of Definition
65 for an almost CR manifold (N,V, J) corresponds via (4.1) to the generalized
Levi form given by (2.46) in Chapter 2.3 on the associated graded tangent bundle
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gr(TN) to the filtration of TN by V. And the Levi form thus defined corresponds
to the algebraic bracket of the complex Heisenberg algebra if and only if the almost
CR structure is partially integrable.

For partially integrable CR structures, canonical (parabolic) Cartan geometries
thus always exist, and 4.16 of [21] shows that the canonical Cartan connection is
torsion-free if and only if the associated CR structure is integrable. We will assume
integrability of CR structures from here on. But as is evident from the homogeneous
model, one needs more structure to guarantee that a parabolic geometry of type
(H,Q) exists, and in general only a geometry of type (PSU(p′ + 1, q′ + 1), PQ) is
guaranteed.

To deal with this problem, we need the existence of a U(1)-PFB on which Z(H)
acts effectively, which is given by fixing a (p′+q′+2)nd root of the canonical bundle
K of the CR manifold. Such a bundle always exists if we either work locally, or
restrict, e.g. to CR manifolds given as real hypersurfaces of Cn′+1. Unfortunately,
the topological obstructions to the global existence of such a line bundle are not
clear in general. For p′ + q′ even, for example, this implies the existence of a spin
structure. In any case, we will assume the existence of such a structure, which is
needed for the conformal Fefferman construction, and call the corresponding geom-
etry a (integrable) CR+ structure.

The description of quaternionic contact (QC) structures as parabolic structures
is quite analogous, and we will therefore be brief. For the homogeneous model,
simply repeat the above steps, but starting with the quaternionic arithmetic vector
space Hp′′+q′′+2 equipped with the standard skew-hermitian metric <,>H of signa-
ture (p′′+1, q′′+1). Then taking H ′ := Sp(p′′+1, q′′+1) and Q′ := stabH′(LH) to
be the stabilizer of the (null) quaternionic line LH := He0, the homogeneous space
H ′/Q′ has a natural QC structure of signature (p′′, q′′) defined completely anal-
ogously to how the CR structure was defined on the homogeneous model above.
Again we have the problem of dealing with the center Z(H ′), which we’ll deal with
below, and here we have Z(Sp(p′′ + 1, q′′ + 1)) ∼= Z2.

A QC structure of signature (p′′, q′′) can also be defined from the infinitesimal
structure of this parabolic homogeneous model. From the geometric description of
H ′ and Q′, it is again straightforward to check that we get a |2|-grading of the Lie
algebra h′ of H ′ by defining:

h′−2 = {h′−2(x) :=

 0 0 0
0 0 0
x 0 0

 |x ∈ Im(H)};

h′−1 = {h′−1(X) :=

 0 0 0
X 0 0
0 −X̄ψt 0

 |X ∈ Hp′,q′};

h′0 = {h′0(a,A) :=

 a+ b 0 0
0 A 0
0 0 −a+ b

 | a ∈ R, A ∈ sp(p′′, q′′), b ∈ Im(H)};

and h′2 = (h′−2)
∗; h′1 = (h′−1)

∗. And the maps h′i define an isomorphism

h′ = h′−2 ⊕ h′−1 ⊕ h′0 ⊕ h′1 ⊕ h′2

∼= Im(H)⊕Hp′′,q′′ ⊕ (R⊕ sp(1)⊕ sp(p′′, q′′))⊕ (Hp′′,q′′)∗ ⊕ (Im(H))∗.

Then we can define:
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Definition 68 Let N ′ be a smooth manifold of odd dimension 4n′′ + 3, n′′ > 1.
A quaternionic contact (QC) structure on N ′ is given by a smooth distribution
V ′ ⊂ TN ′ of co-dimension 3, such that the associated graded tangent bundle gr(TN ′)
to the filtered bundle

TN ′ = T−2N ′ ⊃ T−1N ′ = V ′ ⊃ {0},

equipped with the generalized Levi-form, is point-wise isomorphic to the quaternionic
Heisenberg algebra Im(H)⊕Hp′′,q′′ .

This definition is equivalent to Definition 66 given above. The reason is that
a pointwise isomorphism of the graded tangent bundle as in Definition 68 already
determines a regular infinitesimal flag structure of type (h′, q′) on N ′, i.e. it already
determines a reduction of the associated graded tangent bundle to the structure
group CSp(1)Sp(p′′, q′′). In dimension seven, the infinitesimal flag structure is not
sufficient to guarantee the integrability condition (4.3).

On the other hand, a QC structure in the sense of Definition 66 determines a
regular infinitesimal flag structure of type (h′, q′). In particular, the existence of
local quaternionic contact forms η ∈ Ω1(M ; R3), with ker(η) = V ′ and satisfying
the condition (4.2), implies that the associated graded tangent bundle gr(TN ′) with
Levi bracket is pointwise isomorphic to the quaternionic Heisenberg algebra.

Since the first cohomology groups H1
l (h

′
−, h

′) of positive homogeneity l vanish,
we thus also have canonical normal and regular parabolic geometries for QC struc-
tures. Here again, we must take note of the center of Sp(p′′ + 1, q′′ + 1), which
however is only Z2, in order to get a canonical Cartan geometry of type (H ′, Q′).
Geometrically, this is equivalent to requiring that the lift of the CSp(1)Sp(p′′, q′′)
structure on V ′ to a split structure group C(Sp(1)×Sp(p′′, q′′)) (which always exists
locally) exists globally. We will generally assume this, and refer to the correspond-
ing geometric structures as QC+ structures.

Finally, we note that the canonical (i.e. regular and normal) Cartan connection
of a QC structure is always torsion-free, cf. Section 4.6 of [15]. In dimension
4n′′ + 3 > 7, this can be seen very easily. Namely, using Kostant’s version of
BBW, one sees that H2(h′−, h

′) has exactly two irreducible components, one of
homogeneity 0 and one of homogeneity 2. Hence for a regular normal Cartan
connection ω′′ of type (H ′, Q′), and κ its curvature function, we have κH = κ(2).
Kostant’s version of BBW also gives the generators of the irreducible components,
and for H2(h′−, h

′) the generator is a map from h′−1 ∧ h′−1 to h′0. In particular, this
shows that κH ∈ Λ2(h′−)∗⊗q′, which implies by Proposition 42 that the same holds
for κ, i.e. ω′′ is torsion-free.

4.2 The Fefferman construction and its converse
for CR and QC structures

4.2.1 The existence results

For the rest of this and the next Section, we now fix the notation as above G :=
SO0(p+ 1, q + 1), P := stabG(LR), H := SU(p′ + 1, q′ + 1), Q := stabH(LC), H ′ :=
Sp(p′′+ 1, q′′+ 1), Q′ := stabH′(LH). Then clearly, H ′ ⊂ H ⊂ G all act transitively
on Sp,q, Q ⊃ PH and Q′ ⊃ QH

′ ⊃ PH
′
. From the Fefferman construction described

in Chapter 3.3, we therefore clearly have:
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Proposition 69 Given a CR+ structure (N,V, J) of signature (p′, q′), the canon-
ical parabolic geometry (Q, π′, N, ω′) of type (H,Q) associated to it induces a con-
formal Fefferman space (P, π,M, ω) of signature (p, q) with Hol(ω) ⊆ H. Here M
is a S1 bundle over N .

Given a QC+ structure (N ′,V ′) of signature (p′′, q′′), its canonical parabolic geome-
try (Q′, π′′, N ′, ω′′) of type (H ′, Q′) induces both a CR+ Fefferman space (Q, π′, N, ω′)
of signature (p′, q′) and a conformal Fefferman space (also induced by the CR+ Fef-
ferman space) (P, π,M, ω) of signature (p, q), with Hol(ω) = Hol(ω′) ⊆ H ′. M is
a bundle over N ′ with fiber S3 ≈ Sp(1).

We now want to establish that conformal holonomy groups H and H ′ give rise
to local converse constructions of those in the first and second parts, respectively,
of Proposition 69:

Proposition 70 Given a conformal manifold (M, c) with Hol(M, c) ⊆ H, the
canonical Cartan geometry is locally isomorphic to a conformal Fefferman space
over a parabolic geometry (Q, π′, N, ω′) of type (H,Q), inducing a partially inte-
grable CR+ structure on N .

Given a conformal manifold (M, c) with Hol(M, c) ⊆ H ′, the canonical Cartan ge-
ometry is locally isomorphic to a conformal Fefferman construction over a parabolic
geometry (Q′, π′′, N ′, ω′′) of type (H ′, Q′), inducing a QC+ structure on N ′.

Before proving this, we note that as a result of the normality of the induced Car-
tan connections in both cases, which will be shown in Chapter 4.3, it in fact holds
that the locally induced structures “downstairs” are integrable (this distinction is
vacuous in the QC case except in dimension seven). For the moment, though, this
will not concern us.

Proof: From the Cartan reduction principle given by Proposition 55, we have Car-
tan reductions of the canonical Cartan geometry (P, π,M, ω) associated to (M, c)
to the groups H and H ′, respectively. Using the obvious notation for these Cartan
reductions, by Proposition 57 of Chapter 3.3, it suffices to show, respectively, that
κ(u)(X, .) = 0 for all u ∈ PH and all X ∈ (q/pH), or that κ(u′)(X ′, .) = 0 for all
u′ ∈ PH′ and all X ′ ∈ (q′/pH

′
).

From the discussion in Chapters 3.1-3.2, we see that a reduction of Hol(M, c) to
H gives an orthogonal and parallel complex structure J on the standard conformal
Tractor bundle T (M), while a reduction to H ′ gives three such complex structures,
J1, J2, J3 satisfying the commutation relations of the imaginary quaternions. These
are in particular skew-symmetric endomorphisms of the standard Tractor bundle,
and using the natural identification

so(T (M)) = A(M),

we may identify the complex structures given by our holonomy reduction correspond
to parallel sections of the adjoint Tractor bundle A(M). We can therefore apply the
following result, which follows from the existence of splitting operators for curved
BGG sequences in the general parabolic setting (cf. Corollary 3.5 of [15], for the
conformal setting, this was first proved in Proposition 2.2 of [33]):

Proposition 71 Let s ∈ Γ(A(M)) be a parallel section and let k denote the un-
derlying vector field given by k = Π ◦ s. Then k is a conformal Killing field which
also satisfies

kyKω = 0
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for the curvature two-form Kω ∈ Ω2(M ; g) corresponding to κω.

Now consider the conformal Killing vector fields j and j1, j2, j3 thus induced by the
parallel adjoint Tractors J ∈ A(M) and J1, J2, J3 ∈ A(M) given by the conformal
holonomy reductions to H and H ′, respectively. By Proposition 71, we have:

jyKω = 0;
jiyKω = 0;

respectively, for i = 1, 2, 3. But from the definitions of Q and Q′, it is easy to see
that j spans the distribution Vq = PH ×PH (q/pH) induced by q ⊃ pH , and the ji
span the analogous distribution Vq′ induced by q′ ⊃ pH

′
. Thus the assumptions of

Proposition 57 are fulfilled in both cases, proving Proposition 70. 2

4.2.2 Parallel adjoint Tractors

Proposition 70 gives a quick verification that conformal holonomy reductions to the
groups H and H ′ always guarantee the existence of a local fibration over a partially
integrable CR+ structure or over a QC+ structure, respectively. In fact, as a result
of the normality of the induced Cartan connections in both cases, which will be
proved in the next section, it actually follows that the structures in both cases are
integrable (for the QC case, this is only relevant in dimension 7), since the Cartan
connections inducing them are automatically torsion-free. While in principle this is
enough to proceed with the holonomy correspondence, in the next Section we want
to give some details of how these structures are induced on the local leaf spaces,
in terms of underlying geometries. In the course of that, we’ll also verify a few
properties which will be useful in the computations of the next Section.

First we indicate, in our situation, how the correspondence in Proposition 71
works. For this, recall that any metric g ∈ c in our conformal class gives a P -
invariant splitting

A(M) ∼=g TM ⊕ co(TM)⊕ T ∗M.

Correspondingly, given a choice of metric g we can represent a Tractor s ∈ Γ(A(M)) =
C∞(M, g) in the matrix form:

s =

 −αs γs 0
ks Ks −γψts
0 −kψts αs


where ks ∈ Γ(TM),Ks ∈ Γ(so(TM)) = Γ(T ∗M ∧ TM), αs ∈ C∞(M) and γs ∈
Ω1(M). Evidently, the vector field Π ◦ s given by the natural projection from the
adjoint bundle to the tangent bundle, is given by ks, and in particular this compo-
nent of the representation is invariant under conformal change of the metric.

Using this decomposition, one can compute formulae for the linear connection
∇A and its curvature endomorphism RA with respect to this representation and de-
composition, which are analogous and very similar to (3.9) and (3.10), respectively.
Comparing with the formulae in Section 3 of [44], we get:

∇AXs =


∇gX −Xy X∧ 0

−Pg(X, .)∧ ∇gX 0 X∧
Pg(X, .) 0 ∇gX Xy

0 Pg(X, .)y Pg(X, .)∧ ∇gX




ks
Ks

αs
γs

 . (4.5)
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In particular, as is computed in Section 4 of [44], the first line of the equation
∇As = 0 is conformally invariant, and implies:

rotg(ks) = 2Ks;
divg(ks) = −nαs;

where for any vector field V , rotg(V ) is the skew symmetric endomorphism on TM
defined by identifying d(V ∗) with such an endomorphism via the isomorphism given
by the metric, and divg(V ) = −d∗(V ∗). In particular, inserting these identities into
the first line of (4.5) for any parallel adjoint Tractor s, gives the identity

∇gXks =
1
2
Xyrotg(ks) +

1
n

divg(ks) ·X

for any vector field X and ks = Π ◦ s as above, and this is a common reformulation
of the conformal Killing equation on vector fields.

To see the second part of the statement in Proposition 71, one can directly
compute with the explicit, matrix form of the curvature Kω of the canonical Cartan
connection. A more conceptual approach is given via the notion of infinitesimal
automorphisms, cf. [15]. Given an arbitrary parabolic geometry (P, π,M.ω) of
type (G,P ) an infinitesimal deformation of the parabolic geometry (cf. 3.1 of
[15]) is given by a family {ωτ} of Cartan connections on P which is smoothly
parameterized by τ ∈ (−ε, ε) ⊂ R, such that ω0 = ω. The infinitesimal deformation
is an infinitesimal automorphism if and only if:

d

dτ |τ=0
ωτ = 0.

A section of the adjoint Tractor bundle s ∈ Γ(A(M)), naturally defines a vector
field on P, and the local flows of this vector field determine infinitesimal deforma-
tions of the parabolic geometry by pulling back the Cartan connection along them.
The following fact (cf. Proposition 3.2 of [15]) is proven by direct application of the
formulae for the (standard and adjoint) Tractor connections of a parabolic Cartan
connection:

Proposition 72 Let s ∈ A(M) and let K ∈ Ω2(M,A(M)) be the curvature op-
erator of the parabolic geometry (P, π,M, ω). The infinitesimal deformation of ω
induced by s is given by ∇As + K(Π(s), .). In particular, s is an infinitesimal
automorphism if and only if ∇As = −K(Π(s), .).

For (P, π,M, ω) the normal Cartan geometry associated to a conformal manifold
(M, c), Proposition 71 follows immediately, since infinitesimal automorphisms of the
conformal structure (i.e. conformal Killing fields) are in bijective correspondence to
infinitesimal automorphisms of ω, which correspond to adjoint Tractors s satisfying
∇As = −Kω(Π(s), .). This defines the splitting operator L : Γ(TM) → Γ(A(M)),
which is an inverse to the restriction of the natural projection operator Π to the
space of infinitesimal automorphisms. In particular, if ∇As = 0 for an adjoint
Tractor, the above matrix splitting of ∇A shows that Π(s) = ks is a conformal
Killing field, and hence L(Π(s)) = s satisfies

0 = ∇As = −Kω(Π(s), .).

Furthermore, we have the following “trace formula” for geometric objects asso-
ciated with a parallel adjoint Tractor (cf. Lemma 2.5 of [19]:
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Proposition 73 Let s ∈ A(M) be a parallel adjoint Tractor and ks = Π(s) its cor-
responding conformal Killing field. For any g ∈ c, let Ks = 1

2 rotg(ks) be the corre-
sponding skew-symmetric endomorphism and let {e1, . . . , en} be a local orthonormal
basis with respect to g. If ks is Killing with respect to g (i.e. if divg(ks) = 0), then:

n∑
i=1

εiK
ω(∇gei

ks, ei) =
n∑
i=1

εiK
ω(Ks(ei), ei) = 0. (4.6)

Proof: First note that the first equality in (4.6) follows directly from the assumption
that ks is a conformal Killing field, which means

∇gei
ks = Ks(ei) + λ · ei

for some function λ. Plugging this into the summands, the identity follows from
skew-symmetry of Kω.

From the assumptions, the one-form kyKω ∈ Ω1(M ; g) vanishes identically, and
hence taking the divergence with respect to an orthonormal basis, we have:

0 =
n∑
i=1

εieiy∇gei
(kyKω)

=
n∑
i=1

εi(∇gei
(Kω(k, ei))−Kω(k,∇gei

ei))

=
n∑
i=1

εi∇gei
(Kω)(k, ei) +

n∑
i=1

εiK
ω(∇gei

k, ei).

We claim that the first summand in the final line vanishes, from which the Propo-
sition follows. To see this, recall the matrix forms of the curvature endomorphisms
on standard and adjoint Tractors, respectively, given by the choice of metric g ∈ c
(recall, e.g. the formula (3.10) from Chapter 3.1):

RT (X,Y ) =

 0 Cg(X,Y )∗ 0
0 W g(X,Y ) −Cg(X,Y )
0 0 0

 ;

RA(X,Y ) =


W g(X,Y ) 0 0 0

−Cg(X,Y )∗∧ W g(X,Y ) 0 0
Cg(X,Y )∗ 0 W g(X,Y ) 0

0 Cg(X,Y )∗y Cg(X,Y )∗∧ W g(X,Y )

 .

Here the Cotton-York tensor Cg is considered as a (2, 1)-tensor, Cg ∈ Λ2(T ∗M)⊗
TM :

Cg(X,Y ) := (∇gXPg)(Y )− (∇gY Pg)(X).

From RA(X,Y )s = 0 and RT (ks, X) = 0, we get the following identities:

W g(X,Y,ks, Z) = 0; (4.7)
g(Cg(ks, X), Y ) = 0; (4.8)

for arbitrary vectors X,Y, Z ∈ TM . From the Bianchi identity in semi-Riemannian
geometry, on derives the following standard identity:

n∑
i=1

εi(∇ei
W g)(X,Y, Z, ei) = (3− n)g(Cg(X,Y ), Z).
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Plugging in ks for X in this equality, and using the indetities (4.8) and then (4.7),
shows that the left-hand side vanishes, and it shows the following identity:

g(Cg(X,Y ),ks) = 0. (4.9)

Now we use the fact that ks is Killing with respect to g, which in view of the Killing
equation and the identities relating Ks and αs to ks for a parallel adjoint tractor,
means that Ks = ∇ks and αs = 0. Thus looking at the third row of the matrix
(4.5), we see that s parallel implies γ = −Pg(ks, .). And looking at the second row
of the same matrix implies

∇X∇Y ks = Pg(X,Y )ks − Pg(ks, Y )X (4.10)

+ g(X,Y )Pg(ks)] − g(ks, Y )Pg(X)]. (4.11)

Finally, again using the conformal version of the semi-Riemannian Bianchi identity,
together with several applications of (4.7) and (4.9), gives:

n∑
i=1

g(Cg(ei,∇ei
ks), Z) = − 1

n− 3

n∑
i,j=1

W g(ei,∇ej
∇ei

ks, ej , Z) (4.12)

Plugging (4.11) into (4.12) shows that the right-hand side of the latter identity
vanishes, which completes the proof. 2

4.2.3 Geometry of the converse to the Fefferman construc-
tions

Now we want to describe the converse to the Fefferman constructions geometri-
cally, for both of the holonomy reductions Hol(M, c) ⊂ SU(p′ + 1, q′ + 1) = H and
Hol(M, c) ⊂ Sp(p′′ + 1, q′′ + 1) = H ′, and use the results from the previous section
to establish some properties. For the essential aspects in the case of Hol(M, c) ⊂ H,
we follow the approach in Section 11 of [45].

From the conformal Holonomy reduction, we have parallel complex structures
JT or JTi , i = 1, 2, 3 with the additional quaternionic commutation conditions, re-
spectively. We identify these with∇A-parallel sections of the adjoint Tractor bundle
satisfying the corresponding relations. The first step to a geometric description is
given by the following Proposition describing the form of these adjoint Tractors
with respect to an arbitrary metric g ∈ c:

Proposition 74 Let JT ∈ Γ(A), and let

JT =

 −α γ 0
j J −γ]
0 −j∗ α


be the matrix decomposition of JT with respect to a metric g ∈ c. Then (JT )2 = −id
if and only if the following conditions are met by the vector fields j,−γ] ∈ Γ(TM)
and the endomorphism J ∈ so(TM):
(1) j and −γ] are lightlike eigenvectors of J for the eigenfunction α;
(2) g(j,−γ]) = 1 + α2;
(3) J defines an almost complex structure on the codimension two distribution Ṽ ⊂
TM defined pointwise by Ṽx := (Rj(x)⊕ Rγ](x))⊥g .

56



Proof: This is a reformulation of the Lemma 8 of [45], which is proved by squaring
the matrix form of JT and comparing the result with −id.

The distribution spanned by j is trivially integrable, and we have projections
ψ : M → N onto the local leaf space. The CR structure on N is essentially defined
by taking

V = ψ∗(Ṽ)

and projecting the almost complex structure J . Precisely, if we consider the sub-
bundles

Rj ⊂ (Rj)⊥g ⊂ TM,

then the tensorial endomorphism of TM defined by

X 7→ ∇gXj,

preserves both subbundles as a result of the properties discussed above. In partic-
ular, it descends to a tensorial map on the quotient bundle (Rj)⊥g/(Rj), which we
can see is identified with V and agrees with the projection of the almost complex
structure J from Ṽ.

It is also a straightforward application of the definitions and properties above,
to see that both V and the induced complex structure on it, come from invariant
subbundles of the Tractor bundle, its canonical linear connection and the parallel
adjoint Tractor JT . In this way we see that the CR structure onN is invariant under
choice of metric g ∈ c, which was shown in detail in [45], and corresponds to the reg-
ular infinitesimal flag structure induced by the Cartan connection in Proposition 70.

We note that the pseudo-Hermitian forms for this CR structure are described
quite simply from the conformal manifold (M, c). Take g ∈ c a metric for which ks
is Killing (whose existence is a priori only guaranteed locally). Then g is invariant
under the local flows of j, and θ̃ := g(γ], .) determines a well-defined one-form θ on
N , whose kernel is precisely V, i.e. a pseudo-Hermitian form for the CR manifold
(N,V, J). It follows that the (symmetric) Levi form determined by θ corresponds
to the metric on V induced by g|Ṽ , and so has (real) signature (p − 1, q − 1). For
the resulting pseudo-Hermitian forms we have:

Lemma 75 Given a pseudo-Hermitian structure θ induced as above on the CR
leaf space (N,V, J), and a unitary local basis {E1, . . . , En′} with respect to Lθ, the
“complex trace” of the Cartan curvature vanishes:

n′∑
i=1

Kω′(J(Ei), Ei) = 0, (4.13)

for ω′ the Cartan connection of type (H,Q) given by Proposition 70.

This is proved by an application of (4.6), which we shall do in detail when we
prove the corresponding identity for the quaternionic case. First we describe the
induced QC structure on the leaf space for a conformal holonomy reduction to
H ′ = Sp(p′′ + 1, q′′ + 1). In this case, we have three parallel complex structures
JT1 , J

T
2 , J

T
3 on the standard conformal Tractor bundle, and we denote the corre-

sponding objects to those discussed above by the same symbols, with subscripts
added.
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Multiplying the matrix forms and comparing with the quaternionic commutation
relations, we get:

Ji(jj) = jk + αj · ji;

Ji(γ
]
j) = γ]k + αj · γ]j ;

g(−γ]i , jj) = αk + αj · αi = g(ji, γ
]
j);

g(jr, js) = 0 = g(γ]r, γ
]
s);

g(jr,−γ]r) = 1 + (αr)2;

where (i, j, k) is any cyclic permutation of (1, 2, 3) and r, s = 1, 2, 3 are arbitrary.
We also have analogous identities, with signs reversed, for the cyclic permutations
of (1, 3, 2).

It is clear that the ji and the γ]i are linearly independent and span a non-
degenerate subbundle of TM , and we can define a co-dimension six distribution Ṽ ′
on M by

Ṽ ′ :=< {j1, j2, j3, γ]1, γ
]
2, γ

]
3} >⊥g .

This is evidently equivalent to

Ṽ ′ =
3⋂
i=1

Ṽi

for Ṽi the codimension two distribution associated to each of the JTi as above. In
particular, J1, J2, J3 are three almost complex structures on Ṽ ′ which fulfill the
commutation relations of the quaternions.

We have the integrable distribution Vq′ spanned by j1, j2, j3, and projections
ψ′ : M → N ′ onto a local leaf space, and in addition three different projections
ψi : M → Ni onto a local leaf space for each of the ji, and these in turn project
locally onto N ′, which we denote ψ′i : Ni → N . The induced QC structure on N ′

is defined as follows: Let V ′ := ψ′∗(Ṽ ′). This is a corank three distribution, which
has a fixed conformal class of metrics on it, induced by the conformal class on M ,
restricted to Ṽ ′. The conformal class of metrics is well-defined, since Vq′ is spanned
by conformal Killing fields.

The bundle of complex structures on V ′ is given by taking local sections of any
of the three projections ψ′i : Ni → N ′. For example, picking a local scale g ∈ c
with respect to which j1 is Killing, we get a pseudo-Hermitian form θ1 on the CR
manifold (N1,V1, J1). In addition, let

θ2 := Lθ((ψ1)∗(j2), .), θ3 := Lθ((ψ1)∗(j3), .).

Then for a local section σ : U → N1 of the projection ψ′1, a local, R3-valued one-form
on N ′, θσ ∈ Ω1(U,R3), is defined by

θσ = (θσ1 , θ
σ
2 , θ

σ
3 ) = (σ∗(θ1), σ∗(θ2), σ∗(θ3)).

The requirements for the local contact form of a QC structure (cf. Definition 66 in
Chapter 4.1) are straightforward to verify, and this shows that the distribution V ′
on N ′ has a CSp(1)Sp(p′′, q′′) structure.

Applying the trace formula (4.6) also gives a quaternionic version for the QC
structure on N ′:
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Lemma 76 Let I1, I2, I3 be a quaternionic triple which locally generating the bundle
of complex structures on the QC distribution V ′ defined as above. Then for each
r = 1, 2, 3, there exists a local QC contact form θσr such that, for any unitary
basis {E1, . . . , En′′} of V ′ with respect to Ir and the induced metric gr, the following
identity holds:

n′′∑
i=1

εiK
ω′′(Ir(Ei), Ei) = 0. (4.14)

Proof: From the definition of the local trivialization of the bundle of complex struc-
tures on V ′, it follows that there exists a local section σr : U → Nr of the projection
map ψ′r : Nr → N ′ such that σ∗r (θr) determines the complex structure Ir on V ′ by
the compatibility condition (4.2):

gr(X,Y ) = d(θσr
r )(X, IrY ).

Here, θr is the pseudo-Hermitian form on the CR manifold Nr, defined by choosing
a (local) scale g ∈ c in the conformal class of metrics on M such that jr is Killing,
and gr is the locally defined metric on V ′ given by pulling back the Levi form Lθr

by σr.

Then evidently the formula (4.14) can be verified for the local QC contact form
defined by σr, by checking the corresponding identity on Nr, and this in turn can
be lifted to the conformal manifold M . The curvature tensors Kω′′ ,Kω′ and Kω,
correspond under these changes, so this makes sense. Then we can apply (4.6) for
the parallel adjoint Tractor JTr and the Killing scale g ∈ c for the corresponding
conformal Killing field jr, for a particular choice of local orthonormal basis of TM
with respect to g.

To get this basis, we can lift any unitary basis of V ′ for Ir to M and

{E1, Jr(E1), . . . , En′′ , Jr(En′′)}

gives an orthonormal basis of Ṽ ′. The appropriate orthonormal basis of the or-
thogonal complement of Ṽ ′ is defined as follows, for (r, s, t) a cyclic permutation of
(1, 2, 3): By definition, αr = 0 for the chosen scale, and hence g(jr, γ]r) = −1. Let

e+r :=
1√
2
(jr − γ]r);

e−r :=
1√
2
(jr + γ]r).

Then e+r has length 1, e−r has length −1, and they are mutually orthogonal. Now, if
either js or jt is Killing with respect to g, then one can see that this must automat-
ically hold for the third of our conformal Killing fields. This case is very simple to
check, so we assume in the following that it doesn’t occur, and in particular, αs, αt
are both non-zero. Then let

js,t :=
1

√
cs,t

(
1
αt

js +
1
αs

jt);

γ]s,t :=
1

√
cs,t

(
1
αt
γ]s +

1
αs
γ]t );

where cs,t is a positive constant, which is minus the pairing of the vectors in paren-
theses on the two lines. Explicitly,

cs,t =
(αs)2(1 + (αs)2) + (αt)2(1 + (αt)2)

(αs)2(αt)2
.
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Note that js,t and γ]s,t are light-like vectors, that g(js,t, γ
]
s,t) = −1, and from the

definition both lie in the orthogonal complement (Rjr ⊕Rγ]r)⊥. In particular, they
belong to the distribution on which the endomorphism Jr defines an almost complex
structure. Finally, we define

e+s,t :=
1√
2
(js,t − γ]s,t);

e−s,t :=
1√
2
(js,t + γ]s,t);

and get an orthonormal local basis of TM with respect to g, given by

{e+r , e−r , e+s,t, Jr(e+s,t), e−s,t, Jr(e−s,t), E1, Jr(E1), . . . , En′′ , Jr(En′′)}.

Applying (4.6) for this basis, we get

0 =Kω(Jr(e+r ), e+r ) +Kω(Jr(e−r ), e−r )

+ 2Kω(Jr(e+s,t), e
+
s,t)− 2Kω(Jr(e−s,t), e

−
s,t)

+ 2
n′′∑
i=1

εiK
ω(Jr(Ei), Ei).

Now the Lemma follows by showing that the sum of the first four terms on the
right hand side vanishes. The first two terms vanish identically, because e+r and e−r
are the sum of vectors which are eigenvectors of 0 for the endomorphism Jr. For
the third and fourth summands, note that js,t and Jr(js,t) both insert trivially into
the curvature form Kω, as a result of the properties of parallel adjoint Tractors.
But applying this, and the definitions of e+s,t and e−s,t, we see that the remaining,
non-zero, terms in the third and fourth summands cancel. 2

4.3 Symplectic conformal holonomy

Propositions 69 and 70 give, using only rather general features of the groups H and
H ′, and the associated geometry, a partial holonomy correspondence. To prove the
conformal holonomy correspondence for the symplectic group H ′ := Sp(p′′+1, q′′+
1) given in Theorem 1, it remains to establish normality in both directions:

Proposition 77 The induced Cartan connection ω of type (G,P ) in the second
part of Proposition 69 is always normal (it is automatically regular, since g is |1|-
graded). The induced Cartan connection ω′′ of type (H ′, Q′) in the second part of
Proposition 70 is normal and torsion-free (and therefore regular).

This Section is devoted to a proof of this Proposition. In the course of doing
this, most of what’s needed for the holonomy correspondence for integrable CR
structures and the special unitary group H (cf. [18] and [19]) is also established
along the way. To begin with, these properties may all be established in a purely
local context. So by the previous Section we may take as our context a conformal
Fefferman space (P, π,M, ω) of type (G,P ) (not necessarily the canonical Cartan
geometry for the conformal structure on M), defined over some parabolic geometry
(Q′, π′′, N ′, ω′′) of type (H ′, Q′), and we also have a parabolic geometry of type
(H,Q) between the two.
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Recalling the commutative diagram from Proposition 56 in Chapter 3.3, which
relates the curvature functions κ, κ̃, κ′, etc., we see that restricting to u′ ∈ PH′ ,
we may view the element κ(u′) either as an element of C2(g−, g), of C2(h−, h),
or of C2(h′−, h

′), and it corresponds in this way to the curvature functions κ′ and
κ′′, respectively. By the Ad-equivariance of the normality condition, though, it is
no problem to restrict to PH′ to check normality. For notational convenience, we
will also often omit the point u′, and simply write κ as an element of the various
chain groups. We will write ∂∗p ◦ κ, ∂∗q ◦ κ, or ∂∗q ◦ κ for the co-differential operators
corresponding to the different graded Lie algebras applied to κ, according to whether
we consider κ as an element of C2(g−, g), C2(h−, h) or C2(h′−, h

′), respectively. Then
Proposition 77 can thus be reformulated as:

Proposition 78 If ∂∗q′ ◦κ = 0 and κ is torsion-free of type (H ′, Q′), then ∂∗p ◦κ = 0.
If ∂∗p ◦ κ = 0, then ∂∗q′ ◦ κ = 0, and κ is automatically torsion-free of type (H ′, Q′).

Note first of all that the torsion condition follows directly from the diagram in
Proposition 56, since a Cartan connection of conformal type (G,P ) is normal only
if it is torsion-free. The diagram shows that κ is torsion-free of type (G,P ), i.e.
κ(X,Y ) ∈ p for all X,Y ∈ g only if it is torsion-free of types (H,Q) and (H ′, Q′),
respectively. On the other hand, as was discussed at the end of Chapter 4.1.2,
the canonical Cartan connection for a QC+ structure is always torsion-free of type
(H ′, Q′) (we assume integrability in dimension seven).

4.3.1 Algebraic identities

Proving the proposition reduces to a series of calculations with Lie algebras. Recall
the formula (2.29) from Proposition 16 in Chapter 2.2, which gives an explicit
formula for each of the codifferential operators we’re considering in terms of dual
bases of g− and g+, of h− and h+, or of h′− and h′+, respectively. In particular,
the formulae (2.30) and (2.31) define any of the codifferentials as the sum of two
operators:

∂∗f ◦ φ = (∂∗f ◦ φ)1 − (∂∗f ◦ φ)2,

where we note that for f = p, the second operator in this sum automatically vanishes,
since g is |1|-graded. We claim the following identities for these operators:

Lemma 79 For the curvature function κ as in the assumptions of Proposition 78,
the following algebraic relations hold for the operators (∂∗)1 and (∂∗)2:

1
2
(∂∗qκ)1 = prh(∂∗pκ); (4.15)

1
2
(∂∗q′κ)1 = prh′((∂

∗
qκ)1); (4.16)

(∂∗q′κ)2(h
′
−2(i)) = (∂∗qκ)2(h−2(i)). (4.17)

Proof: – Identity (4.15): First we choose special bases with which to compute
the terms on either side of the identity. Let n′ = p′ + q′. Then h− ∼= R ⊕ Cn′ ,
and we fix the following real basis: Xα := h−1(eα) and Xα+n′ := h−1(ieα) for
α = 1, . . . n′ and {e1, . . . e′n} the standard pseudo-orthonormal basis of Rp′,q′ ; and
X0 = XI := h−2(i). Now let

su(p′ + 1, q′ + 1) ⊂
ϕ- so(p+ 1, q + 1)

A+ iB
ϕ-

(
A −B
B A

)
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be the standard inclusion. This gives the matrix form of a map X ∈ su(p′+q, q′+q)
with respect to the real ordered basis {e0, . . . , en′ , ie0, . . . , ien′}. Then denote by
ψ the automorphism od so(p + 1, q + 1) associating to changing this basis to the
ordered basis {f0, . . . , f2n′+3} defined by:

f0 := e0; f2n′+3 := en′+1;

f1 :=
1√
2
(ie0 − ien′+1); f2n′+2 :=

1√
2
(ie0 + ien′+1);

f2α := eα; f2α+1 := ieα, ∀ 1 ≤ α ≤ n′.

We define a grading of the inclusion ϕ : su(p′ + 1, q′ + 1) ↪→ so(p+ 1, q + 1) by
letting ϕ• = (ϕ−1, ϕ0, ϕ+1), for

ϕi := prgi
◦ ψ ◦ ϕ

for i = −1, 0,+1. Then for our standard basis elements of h from above, it is
straightforward to check the following identities:

ψ ◦ ϕ(X0) =
1√
2

 0 0 0
(f2n′+2 − f1) 0 0

0 (f1 − f2n′+2)ψt 0

 (4.18)

=: ϕ−1(X0); (4.19)

ψ ◦ ϕ(Xα) =

 0 0 0
f2α 0 0
0 −fψt2α 0

 + ϕ0(Xα) (4.20)

=: ϕ−1(Xα) + ϕ0(Xα); (4.21)

ψ ◦ ϕ(Xα+n′) =

 0 0 0
f2α+1 0 0

0 −fψt2α+1 0

 + ϕ0(Xα+n′) (4.22)

=: ϕ−1(X2α+n′) + ϕ0(Xα+n′); (4.23)

and for l = 0, . . . , 2n′ and Zl ∈ h+ the transpose of Xl, we have

ψ ◦ ϕ(Zl) = ϕ0(Zl) + ϕ+1(Zl)

with ϕi(Zl) = (ϕ−i(Xl))t. In particular, note that (ϕ+1)|h− ≡ 0 and (ϕ−1)|h+ ≡ 0.
Finally, for any element δ ∈ h0 of the form

δ =

 a+ i 0 0
0 A0 + iB0 0
0 0 −a+ i

 ,

we have the identity:

ψ ◦ ϕ(δ) =
1√
2

 0 0 0
(f1 + f2n′+2) 0 0

0 (f1 + f2n′+2)ψt 0

 (4.24)

+ ϕ0(δ) +
1√
2

 0 (f1 − f2n′+2)ψt 0
0 0 (f2n′+1 − f1)
0 0 0

 (4.25)

=: ϕ−1(δ) + ϕ0(δ) + ϕ+1(δ). (4.26)
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We use the above formulae to define a real basis {X̃l} of g−, letting X̃l := ϕ−1(Xl)
for 0 ≤ l ≤ 2n′, and taking X̃2n′+2 := ϕ−1(δ) for δ ∈ h0 of the above form.

To fix a dual basis of g+, we use a constant multiple of the Killing form which
is more convenient for explicit calculations and does not affect normality, since it
merely changes the terms we are computing by a constant multiple. Let the bilinear
form B on gl(n) be given by B(X,Y ) := 1

2 trR(X ◦Y ). This is a non-degenerate, Ad-
invariant real-valued form on the Lie algebras we’re considering, and it’s a constant
multiple of the Killing form for each of the Lie algebras g, h, h′ we’re considering.

Now let {Z̃l} be the basis of g+ which is dual to {X̃l} with respect to B, i.e.
B(X̃l, Z̃k) = δlk. Letting {Zk}, 0 ≤ k ≤ 2n′ be the basis of h+ given by taking
Zk to be the pseudo-hermitian transpose to Xk with respect to the form I1,1

p′,q′ , it
follows that {Zk} is dual to {Xk} with respect to B, and the above identities show
that:

ϕ+1(Zj) = Z̃j , ∀ 1 ≤ j ≤ 2n′;

ϕ+1(Z0) = 2Z̃0.

In particular, let us denote Z̃h
l := prh(Z̃l) and Z̃⊥l := prh⊥(Z̃l), where prh and prh⊥

are the projections given by the orthogonal splitting g = ϕ(h) ⊕ ϕ(h)⊥. Then we
have, for l = 1, . . . , 2n:

Z̃l = Z̃h
l + Z̃⊥l =

1
2
(ϕ1(Zl) + ϕ0(Zl)) +

1
2
(ϕ1(Zl)− ϕ0(Zl)); (4.27)

Z̃0 = Z̃h
0 =

1
2
ϕ(Z0). (4.28)

Now we may calculate, for any X ∈ g (without loss of generality, X ∈ h):

(∂∗pκ)(X) =
2n+1∑
l=0

[κ(X, X̃l), Z̃l] (4.29)

=
2n∑
l=0

[κ(X,ϕ(Xl)), Z̃
h
l ] +

2n∑
l=0

[κ(X,ϕ(Xl)), Z̃⊥l ] (4.30)

=
1
2
(∂∗qκ)1(X) +

2n∑
l=0

[κ(X,ϕ(Xl)), Z̃⊥l (4.31)

Here the equality of lines (4.29) and (4.30) uses the fact that κ(X̃2n+1, .) = 0 in our
case, and that κ(ϕ0(Xl), .) = 0, while (4.31) follows from (4.30) by applying the
definition of (∂∗qκ)1 and the fact that Z̃h

l = 1
2ϕ(Zl) as a result of (4.27) and (4.28).

Now, the final term in (4.31) is contained in the orthogonal subspace ϕ(h)⊥ ⊂ g,
because κ(X,Y ) ∈ h for all X,Y ∈ h, together with Ad-invariance of the Killing
form. This proves identity (4.15) of Lemma 79.

Identity (4.16): This is established by a completely analogous calculation, using the
standard embedding:

sp(p′′ + 1, q′′ + 1) ⊂
ϕ′- su(p′ + 1, q′ + 1)

A+ iB + jC + kD
ϕ′-

(
A+ iB −C − iD
C − iD A− iB

)
,
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in order to construct real bases of h′− and h− and dual bases of h′+ and h+ in order
to compare (∂∗qκ)1 and (∂∗q′κ)1. We will also apply the analogous notation as intro-
duced for the calculation of (a), denoting by ϕ′• = (ϕ′−2, . . . , ϕ

′
2) the graded inclusion

defined in the same way as for the inclusion ϕ : su(p′ + 1, q′ + 1) ↪→ so(p+ 1, q+ 1).

Identity (4.17): This is a calculation with matrices, using the inclusion ϕ′•. We need
to look at the form of a few of the basis vectors of h′− and their images under the
graded inclusion ϕ′•. For this inclusion, the calculations are just like for ϕ• above.
If we let ψ′ : su(p′+1, q′+1) → su(p′+1, q′+1) be the analogous automorphism of
ψ, corresponding to changing the complex basis {z0, . . . , zn′′+1, jz0, . . . , jzn′′+1} to
a basis {u0, . . . , u2n′′+3}, with respect to which the hermitian metric <,>C is given
by the form I1,1

p′,q′ , then we have:

ψ′ ◦ ϕ′(h′−2(i)) =


0 0 0
0 0 0
0 0 0
i 0 0

 + ϕ′0(h
′
−2(i))

=: ϕ′−2(h
′
−2(i) + ϕ′0(h

′
−2(i)) = h−2(i) + ϕ′0(h

′
−2(i)).

On the other hand, the other two basis elements of h′−2 are sent to basis elements
of h−1:

ψ′ ◦ ϕ′(h′−2(j)) =
1√
2

 0 0 0
(u2n′′+2 − u1) 0 0

0 (u1 − u2n′′+2)ψ∗ 0


=: ϕ′−1(h

′
−2(j));

ψ′ ◦ ϕ′(h′−2(k)) =
−i√

2

 0 0 0
(u2n′′+2 − u1) 0 0

0 (u1 − u2n′′+2)ψ∗ 0


=: ϕ′−1(h

′
−2(k)).

We have {X̃ ′
l}

4n+3
l=−2 and {Z̃ ′l}, dual bases of h− and h+ constructed from a basis

{X̃ ′
l}4n

′′

l=−2 of h′− by a process analogous to that used in the proof of Lemma 79.
Using these:

(∂∗qκ)2(h−2(i)) =
4n+3∑
l=−2

κ([h−2(i), Z̃ ′l ], X̃
′
l) =

4n∑
l=−2

κ([h−2(i), Z̃ ′l ], X̃
′
l) (4.32)

=
4n∑
l=1

κ([ϕ′(h′−2(i)), ϕ
′(Z ′l)], ϕ

′(X ′
l))−

4n∑
l=−2

κ([h−2(i), ϕ′0(Z
′
l)], ϕ

′(X ′
l))

(4.33)

Here we have applied several times the fact that κ(X, .) vanishes whenever X ∈ q =
h0 ⊕ h1 ⊕ h2 or X ∈ ϕ′(q′), in order to go from line (4.32) to line (4.33). Now we
claim that the last term in (4.33) vanishes, and thus the identity (4.17) is proven.
This claim follows since [h−2(i), ϕ′0(Z

′
l)] vanishes for all l = −2, . . . , 4n, as a result

of writing h−2(i) = ψ′ ◦ ϕ′(h′−2(i)) − ϕ′0(h
′
−2(i)) and ϕ′0(Z

′
l) = ψ′ ◦ ϕ′(Z ′l). Then

similar to the case for the grading of su(p′ + 1, q′ + 1), we have the identity

[h′−2(i), h
′
+1(v)] = −h−1(iv)
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for v ∈ Hp′′,q′′ ∼= h′−1. In particular, [ψ′ ◦ ϕ′(h′−2(i)), ψ
′ ◦ ϕ′(Z ′l)] = ψ′ ◦ ϕ′(h′−1(iv))

for some v ∈ Hp′′,q′′ . Now, comparing the grading components, we see that it can’t
have a non-zero term in h−2, and hence the commutator in question must vanish.
2

4.3.2 Proof of Theorem 1

We first prove that a normal structure “upstairs” induces a normal structure “down-
stairs”:

Lemma 80 For κ as in the assumptions of Proposition 78, if ∂∗pκ = 0, then ∂∗qκ =
(∂∗qκ)1 = 0. Moreover, this also implies that ∂∗q′κ = (∂∗q′κ)1 = 0.

Proof: From part (a) of Lemma 79, we know that (∂∗qκ)1 = prh(∂∗pκ) = 0 under the
assumptions. Thus, to prove the first statement of this Lemma, it suffices to show
that

(∂∗qκ)2(X) =
1
2

2n∑
l=0

κ([X,Zl], Xl)

vanishes for all X ∈ h−. Since κ(Y, .) = 0 for all Y ∈ q, it suffices to check this fact
for X ∈ h−2 and restrict to basis elements Zl ∈ h1, i.e. l = 1, . . . , 2n. Note that
for our basis element X0 = h−2(i) ∈ h−2 and v ∈ Cp′,q′ , simple matrix calculation
yields: [h−2(i), h1(v)] = −h−1(iv). Thus

(∂∗qκ)2(X0) =
1
2

2n∑
l=1

κ([h−2(i), Zl], Xl) (4.34)

=
1
2

n∑
α=1

(κ(−h−1(iXα), h−1(Xα)) + κ(−h−1(−Xα), h−1(iXα))).

(4.35)

Now, from the pointwise isomorphism gr(TxN) ∼= h− given by the partially inte-
grable CR structure (N,V, J) defined on the local leaf space N at the end of the
previous Section, we can identify, for u ∈ PH , and ξ̃, η̃ ∈ ω(u)−1(h−1) ⊂ TuPH and
π′∗(ξ̃) = ξ, π′∗(η̃) = η ∈ Vπ′(u), the curvature terms

κ(ω(u)(ξ̃), iω(u)(η̃)) = K(ξ, Jη).

and by the identity (4.13) from the previous Section, we see that this term vanishes
by choosing (if necessary, locally) a scale g ∈ c for which j is Killing. I.e. for a local
(unitary) basis {Y1, . . . Y2n′} of V, we have:

2n′∑
l=1

K(Yl, JYl) = 0.

Thus, (∂∗qκ)2(X) = 0 for all X ∈ h−. From the second identity of Lemma 79, now,
we also have (∂∗q′κ)1 = prh′((∂∗qκ)1) = 0, so to complete the proof of the present
Lemma, it suffices to show that (∂∗q′κ)2 vanishes. Again, it suffices to check this on
basis elements of h′−2. By an argument completely analogous to that above, this
follows from the formula (4.14) using the commutator relations for the quaternionic
Heisenberg algebra. 2

Now, to establish Proposition 78, and therefore the conformal holonomy corre-
spondence in Theorem 1 , it only remains to prove:
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Proposition 81 For κ the curvature operator as in the assumptions of Proposition
78, if κ is torsion-free considered as type (H ′, Q′) and ∂∗q′ ◦ κ = 0, then ∂∗p ◦ κ = 0.

This proposition is established via the following two Lemmas:

Lemma 82 If κ is regular and normal of type (H ′, Q′), then (∂∗q′κ)1 = (∂∗q′κ)2 = 0
and κ is torsion-free when considered as type (G,P ) (hence also when considered as
type (H,Q)).

Lemma 83 If (∂∗q′κ)1 = (∂∗q′κ)2 = 0 and κ is torsion-free of type (G,P ), then
(∂∗qκ)1 = (∂∗qκ)2 = 0. Moreover, this implies that ∂∗p ◦ κ = 0.

Proof of Lemma 82: The first statement in this Lemma is in fact a general feature
of all torsion-free, normal parabolic Cartan connections, cf. the proof of statement
(1) in Theorem 3.5 of [15]. First, using the identification h′+

∼= (h′−)∗, we can rewrite
any 2-chain β ∈ C2(h′−, h

′) as a sum∑
1≤i<j≤4n′′+3

Zi ∧ Zj ⊗ tij ;

where {Z1, . . . , Z4n′′+3} is a basis of h′+ and tij ∈ h′. Then one sees that the
codifferential ∂∗q′ can be reformulated (on basis vectors) as

∂∗q′ : Zi ∧ Zj ⊗ tij 7→ Zi ⊗ [Zj , tij ]− Zj ⊗ [Zi, tij]− [Zi, Zj ]⊗ tij ,

and we see that the operator (∂∗q′)2 corresponds to the map

[ , ]⊗ id : Λ2(h′+)⊗ h′ → Λ1(h′+)⊗ h′.

The irreducible component H2
2 (h′−, h

′) (in which κH lives) corresponds to a h′0-
submodule in Λ2(h′+)⊗h′. The map [ , ]⊗id gives a homomorphism of h′0-submodules,
so by Schur’s Lemma it is either identically zero on the submodule corresponding
to H2

2 (h′−, h
′), or maps it injectively into Λ1(h′+)⊗ h′. But by Kostant’s version of

BBW, the submodule corresponding to H2
2 (h′−, h

′) has multiplicity 1 in Λ∗(h′+)⊗h′,
and hence κH ∈ ker([ , ]⊗id). Applying Proposition 42 (ker([ , ]⊗id) is a Q′-module),
we see that the same holds for the full curvature κ, which shows the first statement
in the Lemma.

In Chapter 4.1 we noted that the regular normal Cartan connection of a QC+

structure (integrability is assumed in dimension 7) is automatically torsion-free of
type (H ′, Q′). Hence we have κ(X,Y ) ∈ q′ for all X,Y ∈ h′−. In particular,
κ(2)(X,Y ) ∈ h′0. Then applying Proposition 37 to κ(2) for X,Y ∈ h′−1 and Z ∈ h′−2,
the definition of the differential ∂ : C2(h′−, h

′) → C3(h′−, h
′) (cf. Definition in

Chapter 2.2) gives:

0 = (∂κ(2))(Z,X, Y )

= [Z, κ(2)(X,Y )]− [X,κ(2)(Z, Y )] + [Y, κ(2)(Z,X)]

− κ(2)([Z,X], Y ) + κ(2)([Z, Y ], X)− κ(2)([X,Y ], Z)

= [Z, κ(2)(X,Y )].

Taking an arbitrary Z ∈ h′−2 and using the general form for a matrix in h′0 which
was given in Chapter 4.1, we see that the last line is
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[Z, κ(2)(X,Y )] = [

 0 0 0
0 0 0
z 0 0

 ,

 a+ x 0 0
0 A 0
0 0 −a+ x

] (4.36)

=

 0 0 0
0 0 0

2az + zx− xz 0 0

 (4.37)

Now it follows that (4.37) can only vanish, for arbitrary z ∈ Im(H), if a = x = 0.
But matrices of this form in h′0 are actually contained in p, since they annihilate
the real light-like vector e0. Thus κH = κ(2) has values in p ∩ h′. Since this is a
Q′-module, Proposition 42 again tells us that κ has values in this module, i.e. κ is
torsion-free considered as type (G,P ). 2

Proof of Lemma 83: From the identity (4.17) of Lemma 79, we know that (∂∗q(κ))2
vanishes, and moreover, by identity (4.16) of the same Lemma, it suffices to show
that the map

ψ := pr(h′)⊥((∂∗q′κ)1(X))

vanishes for an arbitrary X ∈ h−.

Let Ω denote the symplectic form defining sp(2(n′′+2),C) as a complex subalgebra
of so(2(n′′ + 2),C). We have the standard identity

sp(p′′ + 1, q′′ + 1) = su(2(p′′ + 1), 2(q′′ + 1)) ∩ sp(2(n′′ + 2),C),

and using the splitting 2A = (A + ΩAΩ) + (A − ΩAΩ), for A any matrix in
su(2(p′′ + 1), 2(q′′ + 1)), we can identify the subspace (h′)⊥ ⊂ h as the set of
those matrices which anti-commute with multiplication by j (and hence also k)
on Hp′′+1,q′′+1 = Cp′′+2,q′′+2.

Moreover, since κ is torsion-free of type (G,P ), from definition (2.30) we see that
ψ ∈ [q, h+] ⊂ h+. The subalgebra h+ can be characterized as those maps in h which
map all vectors in the complex orthocomplement L⊥C

C into LC. But the subspace
L⊥H

H is contained in the former subspace, and since ψ anti-commutes with both j

and k, the image ψ(L⊥H
H ) is a quaternionic subspace, contained in the complex line

LC, and must be the 0 subspace.

Therefore, the map ψ is determined on the quotient Hp′′+1,q′′+1/L⊥H
H . Let v0 ∈ LC

be a non-zero vector, and let x0 ∈ Hp′′+1,q′′+1 be its dual vector: < v0, x0 >= 1.
Letting w0 := ψ(x0), then {x0, jx0} induce a complex basis of the quotient space,
and the map ψ is determined by (x0, jx0) - (w0,−jw0). On the other hand, since
jx0 ∈ L⊥C

C , we must have w0 ∈ LC, i.e. w0 = jz0v0 for some z0 ∈ C. Therefore, the
map ψ in question is determined by ψ : (x0, jx0) - (z0jv0, z0v0), which is easily
seen to be symmetric with respect to <,>C. Thus, ψ ∈ h only if it is identically zero.

We have thus shown that (∂∗qκ)1 = (∂∗qκ)2 = 0. Then the final argument in the
proof of Theorem 2.5 of [18] (the preceding argument is just a symplectic version
of that argument), shows that ∂∗p ◦ κ vanishes. 2

4.4 Weyl structures for Fefferman spaces

In this Section, we give a recipe for relating the (exact) Weyl structures of a
parabolic geometry (Q, π′, N, ω′) of general parabolic type (H,Q) to exact Weyl
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structures on the generalized Fefferman space (P, π,M, ω) of type (G,P ), whenever
H ⊆ G acts transitively on G/P and Q ⊇ PH . In the following Section, we will
apply this to give a geometrically simple argument showing that the generalized
conformal Fefferman space of a CR+ geometry, as discussed in Chapter 4.1, is a
conformal covering of the classical Fefferman space as defined, e.g. in [42].

Let (H,Q) and (G,P ) be as above, and let h and g be the Lie algebras of H
and G, respectively. Suppose h has a |k|-grading induced by the Lie algebra q of Q,
and that g has a |k̃|-grading induced by the Lie algebra p of P . To relate the Weyl
structures, we need a certain type of inclusion of the Lie algebras:

Definition 84 A graded inclusion of h in g with respect to the parabolic pairs
(H,Q) and (G,P ) is an injective Lie algebra homomorphism

ϕ : h ↪→ g

together with a decomposition ϕ• = (ϕ−k̃, . . . , ϕk̃) such that ϕi(X) ∈ gi for all
−k̃ ≤ i ≤ k̃ and all X ∈ h. Equivalently, for the grading element ε̃0 defining the
grading of g, ϕ• satisfies

[ε̃0, ϕi] = iϕi.

To define a map of Weyl structures on (Q, π′, N, ω′) to Weyl structures on the
Fefferman space, it is most convenient to use the third characterization of a Weyl
structure given by (2.56) in Chapter 2.4. So a Weyl structure on (Q, π′, N, ω′) is
given by a Q-equivariant isomorphism

E• : Q× (h− ⊕ h0 ⊕ h+) → Q× h.

Then the associated Weyl structure on the Fefferman space is precisely the P -
equivariant isomorphism Ẽ• which makes the following diagram commute:

P × (g− ⊕ g0 ⊕ g+)
Ẽ• - P × g

Q× (h− ⊕ h0 ⊕ h+)

Φ•

∪

6

E• - Q× h

Φ

∪

6

where Φ• := ι× ϕ• and Φ := ι× ϕ are induced by the usual inclusion

ι : Q = PH ↪→ P.

Explicitly, Ẽ• is given as follows. First, by Q-invariance we may assume that the
first factor of E•, composed with projection onto the first component, which maps

Q → Q,

is the identity, and the same will hold for Ẽ•. We can thus abuse notation and write

E−1
• (u) : h → (h− ⊕ h0 ⊕ h)

to denote the linear isomorphism, depending smoothly on u ∈ Q, which is given by
composing E−1

• with projection onto the second component.
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Using this, we define a linear isomorphism

Ẽ•
−1

(u) : g → (g− ⊕ g0 ⊕ g+)

for u ∈ Q ⊆ P as follows: For X ∈ h ⊂ g, let

Ẽ•
−1

(u)(X) := (ϕ−k̃(E
−1
• (u)(X)), . . . , ϕk̃(E

−1
• (u)(X))).

By transitivity of H on G/P , we see in particular that

q ◦ ϕ : h → (g/p) ∼= g−

is onto. From the isomorphisms h+
∼= (h−)∗ and g+

∼= (g−)∗, moreover, this implies
that the vector subspace g− ⊕ g+ ⊆ ϕ•(h). Thus, from bijectiveness and linearity,
we have a well-defined map

Ẽ•(u)|g−⊕g+ : g− ⊕ g+ → g.

Now, Ẽ•(u)(g− ⊕ g+) is a non-degenerate subspace of g with respect to the Killing
form, and we define, for any X = Ẽ•(u)(X−+X+)+X⊥ ∈ g split according to this
decomposition,

Ẽ•
−1

(u)(X) = X− +X⊥ +X+

where we take X⊥ ∈ g0.

The linear isomorphisms Ẽ•(u) thus defined for u ∈ PH , are Q-equivariant since
E• has this property, and they clearly make the diagram commute. Extending by
P -equivariance to all points of P gives the desired Weyl structure Ẽ•.

To make use of these naturally induced Weyl structures to describe explicitly the
conformal geometry of the Fefferman spaces we’re interested in, we need a result on
the exactness of Ẽ•. Recall from Chapter 2.4 that a Weyl structure given in the form
E• as it is here, gives a Q-invariant lift of the splitting of the Cartan connection:

E−1
• ◦ ω′ = ω′h− + ω′h0

+ ω′h+

= (π′)∗θσ + (π′+)∗ωσ + (π′)∗Pσ,

where σ : Q0 → Q is the corresponding Weyl structure, in the form of a Q0

equivariant section of the Q+-PFB π′+ : Q → Q0. Moreover, given a representa-
tion λ : Q0 → R+ inducing the bundle of scales Lλ, there is a (trivial) extension
λ̄ : Q→ R+ given by λ̄ = λ ◦ q, for q : Q→ Q/Q+

∼= Q0 the quotient map.

Then given a scaling element ελ ∈ h0 corresponding to a representation λ :
H0 → R+ and a bundle of scales Lλ on N , the definition of an exact Weyl structure
can clearly be reformulated as:

Proposition 85 A Weyl structure E• is exact if and only if the connection on
Lλ ∼= Q/Ker(λ̄) to which λ′ ◦ ω′h0

∈ Ω1(Q) descends, has trivial holonomy.

We can now formulate the main result of this Section, giving induced exact Weyl
structures on the Fefferman space. Note, for the formulation of the conditions, that
we assume fixed algebraic Weyl structures for both (H,Q) and (G,P ) (giving the
gradings on the Lie algebras). In particular, this allows us to identify Q0 = Q/Q+

and P0 = P/P+ as subspaces of Q and P , respectively.
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Proposition 86 Let (P, π,M, ω) be a Fefferman space of parabolic type (G,P ),
induced by a parabolic geometry (Q, π′, N, ω′) of type (H,Q), with a graded inclusion
ϕ• of h in g as above. Suppose that scaling elements ελ ∈ z(h0) and ελ̃ ∈ z(g0) exist
for the base geometry and the Fefferman space, respectively, such that ελ ∈ z(h0)∩p
and such that

Q0 ∩ P
q̃ ◦ ι - P0

λ λ̃

R+
¾

-

commutes. Then the induced Weyl structure Ẽ• on (P, π,M, ω) is exact whenever
E• is an exact Weyl structure on (Q, π′, N, ω′).

Proof: Consider the projection
p : M → N

given naturally by the Fefferman construction. Clearly it suffices to prove that un-
der the above assumptions, the scale bundle Lλ̃ defined on M by λ̃ is a pull-back
of the scale bundle Lλ with respect to the map p, and that the connection on Lλ̃
to which λ̃′ ◦ ωg0 ∈ Ω1(P) descends, is induced by this pullback.

By differentiating the commutativity relation in the assumptions of the Proposition,
we get:

λ′ = λ̃′ ◦ ϕ0.

Combining this with the commutativity condition which defined Ẽ•, we see that the
one-form λ′ ◦ ω′h0

∈ Ω1(Q), which descends to the principal bundle connection on
Lλ, is the pull-back of the one-form λ̃′ ◦ ωg0 , which induces the principal bundle
connection on Lλ̃. Hence if we can show that Lλ̃ fibers over Lλ, covering the fiber
bundle projection p : M → N , then the result follows.

The commutativity assumption in the Proposition implies that

Ker(λ̄) ∩ P = H ∩Ker(¯̃λ).

and hence that
Q/(Ker(λ̄) ∩ P ) ∼= P/Ker(¯̃λ) ∼= Lλ̃.

On the other hand,
Lλ ∼= Q/Ker(λ̄),

which induces a fibration Lλ̃ → Lλ with fiber diffeomorphic to Ker(λ̄)/(Ker(λ̄)∩P ).
But from the assumption ελ ∈ p, it follows that this fiber is isomorphic toQ/(P∩H),
from which it’s clear that Lλ̃ is a pull-back of Lλ by the projection p. 2

4.5 Relation to the classical Fefferman metric

To conclude, we apply the techniques of the previous Section to explicitly identify
the conformal structure of the Fefferman space induced by the canonical parabolic
geometry (Q, π′, N, ω′) associated to a CR+ manifold (N,V, J). To relate this to
the conformal class of metrics given directly by the classical Fefferman construction,

70



first we note that our Fefferman space M is a (n′ + 2)-fold covering of the classical
Fefferman space F .

This can be seen by considering a pseudo-Hermitian form θ ∈ Ω1(N) for the
underlying CR structure (N,V, J). This fixes a reduction of the filtered CR frame
bundle to a U(p′, q′)-PFB, which we’ll denote as Uθ(N,V, J). The filtered CR+

frame bundle Q0 is by definition a (n′ + 2)-fold covering of the filtered CR frame
bundle, and thus lifting the reduction given by θ also gives a reduction of this bun-
dle to a principal Q0/R+ fiber bundle which is a (n′+2)-fold covering of Uθ(N,V, J).

Topologically, the classical Fefferman space F is the U(1)-PFB f : F → N
given by the real projectivization of the C∗ bundle K − {0}, for K the canonical
bundle defined in Chapter 4.1. Given a pseudo-Hermitian form θ for (N,V, J), we
have the Levi form Lθ of the pseudo-Hermitian structure, which is non-degenerate
of signature (p′, q′), and using this we can define a unitary frame to be a local
complex basis of T 1,0,

{E1, . . . , En′},
with respect to which LC

θ has the form Ip′,q′ , and such frames define the U(p′, q′)-
PFB Uθ(N,V, J). If we let {θ1, . . . , θn′} be the dual one-forms in T ∗N ⊗C to such
a local basis, then the form τ = θC ∧ θ1 ∧ . . . ∧ θn′ defines a local section of the
canonical bundle K.

From this, we see that F can equivalently be defined as the associated U(1)
bundle given by the determinant representation:

F = Uθ(N,V, J)×(U(p′,q′),det) S
1.

From the descriptions above, it can also be seen that the manifold from the gen-
eralized Fefferman space, M = Q/PH , can be associated to the principal Q0/R

+

via the determinant representation applied to the unitary matrix in the “middle”
of Q0. This identifies M as the (n′ + 2)nd root of the U(1)-bundle F → N :

M = (n′+2)
√
F

and we denote the natural (n′ + 2)-fold covering of U(1)-bundles by

z : M → F.

Now, the Webster connection form ωθ ∈ Ω1(Uθ(N,V, J), u(p′, q′) for a choice of
pseudo-Hermitian form θ, induces a principal bundle connection form on F , which
we denote by Aθ, and given a local unitary frame s and its induced local section τs
of the canonical bundle as above, we denote the induced local section of F by τ ′s,
and we have:

(τ ′s)
∗Aθ = −tr(ωθ(s)).

The U(1) principal bundle connections on F form an affine space modeled on the
space of one-forms on N with purely imaginary values. The Fefferman connection
form on F , AF , is defined, given a choice of pseudo-Hermitian form θ, by:

AF := Aθ − iRθ

2(n′ + 1)
θ,

where Rθ denotes the scalar curvature of the Webster connection ωθ. Then the
Fefferman metric on F associated to the pseudo-Hermitian form, is given by

fθ := f∗Lθ − i
4

n′ + 2
f∗θ ◦AF . (4.38)
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Here, ◦ denotes the symmetric tensor product. The conformal class of metrics
[fθ] thus defined on the classical Fefferman space F is invariant under choice of
(positively oriented) pseudo-Hermitian form θ. More precisely, cf. Theorem 5.17 of
[42], we have fe2φθ = e2φfθ for any smooth function φ ∈ C∞(N). Now we relate
the classical Fefferman construction to our conformal Fefferman space:

Proposition 87 Let (N,V, J) be a CR manifold which also has a CR+ struc-
ture, with associated canonical parabolic geometry (Q, π′, N, ω′) of type (H,Q). Let
(P, π,M, ω) be the (parabolic) conformal Fefferman space induced by this parabolic
geometry, and let (F, c) be the classical Fefferman space associated to the CR man-
ifold. Then z : M → F is a conformal covering.

More precisely, let θ be a pseudo-Hermitian form for the CR structure, inducing an
(exact) Weyl structure Eθ• on (Q, π′, N, ω′) and a pseudo-Riemannian metric fθ ∈ c.
Then z : M → F gives an isometric covering of (F, fθ) by the pseudo-Riemannian
metric on M defined by the induced Weyl structure Ẽθ• .

Proof: Although the assumptions of Proposition 86 at first glance seem rather
elaborate and technical, in fact in the CR case they are all quite naturally satisfied.
A graded inclusion ϕ• : h → g was defined in Chapter 4.2. We use the simplest
scaling elements, namely the grading elements:

ελ :=

 1 0 0
0 0 0
0 0 −1

 ; ελ̃ :=

 1 0 0
0 0 0
0 0 −1

 .

It is straightforward to see that ελ and ελ̃ thus defined, satisfy the assumptions of
Proposition 86. Hence the induced Weyl structure Ẽθ• on (P, π,M, ω), coming from
a pseudo-Hermitian form θ on the CR manifold (N,V, J), is exact.

In particular, Ẽθ• defines a pseudo-Riemannian metric (which we’ll denote by γθ) con-
tained in the conformal class on M induced by the parabolic geometry (P, π,M, ω).
Consider the splitting of the Cartan connection ω:

(Ẽθ• )−1 ◦ ω = ωg− + ωg0 + ωg+

given by the Weyl structure Ẽθ• . We can describe the metric γθ on M by using the
first component of this splitting, which is the pull-back by π of the soldering form
on the orthogonal frame bundle of γθ. Explicitly, for X,Y ∈ TM , and choosing
X̃, Ỹ ∈ TP such that π∗X̃ = X,π∗Ỹ = Y , we have

(γθ)π(u)(X,Y ) = ωg−(u)(X̃) · (ωg−(u)(Ỹ ))ψt

where we identify an element A ∈ g− with a column vector via the isomorphism
g− ∼= Rp+q+2.

Using this realization of the metric γθ, we can describe it in terms of geometric
objects determined by the pseudo-Hermitian structure (N,V, J, θ). Let ξ ∈ Γ(TN)
be the Reeb vector field determined by θ and let E1, . . . , En′ , iE1, . . . , iEn′ be a
local unitary basis of V with respect to the metric gθ. To use the splitting of ω
above to give γθ in terms of these vectors, there is a preferred lift of these local
vector fields to the bundle Q which are natural. Namely, we consider the splitting
of the Cartan connection ω′ given by Eθ• :

(Eθ• )−1 ◦ ω′ = ω′h− + ω′h0
+ ω′h+

. (4.39)
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In particular, the “non-negative” part,

ω′q = ω′h0
+ ω′h+

∈ Ω1(Q, q),

is seen to give a principal bundle connection on Q. Letting

ξ̃, Ẽ1, . . . , Ẽn′ , ˜iE1, . . . , ˜iEn′

be the horizontal lifts of the above vector fields on N with respect to this connection,
then by definition, (Eθ• )−1 ◦ω′(ζ) = ω′h−(ζ) for any of these vectors ζ. Using the fact
that ω′h− is the pull-back of the soldering form on N given by the pseudo-Hermitian
form θ, moreover, we get the identities:

(Eθ• )−1 ◦ ω′(ξ̃) = X0 := h−2(i); (4.40)

(Eθ• )−1 ◦ ω′(Ẽj) = Xj := h−1(ej); (4.41)

(Eθ• )−1 ◦ ω′( ˜iEj) = Xn′+j := h−1(iej); (4.42)

where X0, . . . , X2n′ are the standard basis elements of h− as defined in Chapter 4.2.

Now, from the form of ϕ−1, and the defining property of the induced Weyl structure
Ẽθ• , we see immediately that the form ωg− given by this Weyl structure, maps the
vectors Ẽj , ˜iEj to a set of pseudo-orthonormal basis vectors in g− ∼= Rp,q, while it
maps the vector ξ̃ to a light-like vector whose dual is given by the vector X̃2n′+1

defined in Chapter 4.2. In particular, if we fix an element

δ =

 i 0 0
0 iB0 0
0 0 i

 ∈ h0,

then ϕ−1(δ) = X̃2n′+1; let δ̃ be its fundamental vector field on Q, then we get
the following identities for γθ, where π : P → M is the usual projection map and
Q = PH is considered as a submanifold of P:

γθ(π∗(Ẽj), π∗(Ẽk)) = γθ(π∗( ˜iEj), π∗( ˜iEk)) = δjk; (4.43)

γθ(π∗(ξ̃), π∗(δ̃)) = 1; (4.44)

for all 1 ≤ j, k ≤ n′, and where all other pairings not listed give zero (in particular,
π∗(ξ̃) and π∗(δ̃) are light-like with respect to γθ.

To relate the above-described metric γθ to the classical Fefferman metric fθ via
the covering z : M → F , we need explicit information about the horizontal lifts
used above, which in turn comes from information about the explicit form of the
principal bundle connection ω′q = ω′h0

+ ω′h+
defining the lifts.

In [36] as well as [34], formulae are given which, analogous to the matrix form
given in (3.9) in Chapter 3.1 for conformal geometry, express the standard Tractor
connection of a CR+ structure in terms of an induced decomposition and geometric
quantities of a pseudo-Hermitian form θ for the underlying CR structure. We will
only need the component corresponding to ω′h0

, which corresponds to the “diagonal”
component of the affine connection

∇h : T CR(N) → T ∗N ⊗ T CR(N),

where T CR(N) is the CR Tractor bundle, which is decomposed, via the pseudo-
Hermitian form θ, as

T CR(N) ∼= −(n′+2)
√
K ⊕ TN ⊕ (n′+2)

√
K
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for K the canonical bundle of (N,V, J) introduced in Chapter 4.1, which we assume
has a (n′+)nd root. From the formulae (5.11)-(5.13) in [36], the diagonal component
can be written as:

∇h0
X =

 ∇θX 0 0
0 ∇θX 0
0 0 ∇θX



+ iθ(X)


Rθ

2(n′+1)(n′+2) 0 0

0 Rθ

2(n′+1)(n′+2) − Pθ 0

0 0 Rθ

2(n′+1)(n′+2)

 ,

where Pθ is the CR Schouten tensor, defined analogously to the conformal Schouten
tensor by:

Pθ :=
1

n′ + 2
(Ricθ − Rθ

2(n′ + 1)
gθ),

and satisfying: trPθ = 1
2(n′+1)R

θ. Here ∇θ denotes the affine connection induced
by the Webster connection form ωθ associated to the pseudo-Hermitian form θ. The
affine connection acts naturally on K and its roots, which is what’s denoted in the
upper left and lower right entries.

Using the above formula and remarks, we can convince ourselves that ω′h0
∈ Ω1(Q, h0)

is the pull-back (by the (n′ + 2)-fold covering map composed with the projection
maps Q → Q0 → Q0/R+) of the principal connection form

ωF := ωW − i(Pθ ⊗ θ),

and one can also check that ωF induces, via the determinant representation, the
Fefferman connection form AF ∈ Ω(F ; u(1)).

Therefore, taking the horizontal lift to M of a vector field on N with respect to the
pull-back of this connection form, z∗AF , is equivalent to first taking the horizontal
lift to Q with respect to ω′q, and then projecting with π∗ to a vector field on M .
(Note that the h+-component of ω′q doesn’t effect anything, since ϕ−1 restricted to
h+ is identically zero.) On the other hand, from the condition b = − 1

2 trC(A0) for a
matrix in h0 of the form  a+ ib 0 0

0 A0 0
0 0 −a+ ib

 ,

it follows that the fundamental vector field δ̃ projects onto (1/2)̃i, the fundamental
vector field on M of (i/2) ∈ u(1). And since z is a (n′+2)-fold covering, this vector
projects onto n′+2

2 ĩF , the fundamental vector field on F . Then we can translate the
formulae in (4.43) and (4.44) for γθ to get the following identities, where ξ is the
Reeb vector field:

γθ(E∗j , E
∗
k) = γθ(iE∗j , iE

∗
k) = δjk;

γθ(ξ∗, ĩ) = 2.

Using the formula (4.38) for fθ, the above information about projection of funda-
mental vector fields under z and the fact that this covering preserves horizontal
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lifts, we get in comparison:

fθ(z∗(E∗j ),z∗(E∗j )) = fθ(z∗(iE∗j ),z∗(iE∗k)) = δjk;

fθ(z∗(ξ∗),z∗(̃i)) = 2.

2
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Chapter 5

Conclusions and perspectives

We have given a Fefferman construction principle for conformal manifolds with
(irreducible) symplectic holonomy, and at the same time shown that conformal
manifolds with this holonomy are always locally isomorphic to the Fefferman con-
struction. Besides extending the conformal holonomy correspondence for Fefferman
constructions starting with a CR manifold, our presentation has the advantage of
putting the construction in the context of a possible classification for all (connected)
irreducible conformal holonomy groups acting transitively on the Möbius sphere. In
this concluding Chapter, we discuss the possible avenues of further work to be done
on this and other aspects of conformal holonomy theory.

An obvious task is to investigate the other cases indicated by the list obtained
in Chapter 3.4. For each of these groups H, and any parabolic subgroup Q ⊇ PH ,
of course a parabolic geometry of type (H,Q) gives rise to a conformal Fefferman
space of the appropriate signature. With explicit representations of the Lie alge-
bras, one should try to establish what kind of geometric structures correspond to
the parabolic pair; whether a normal, torsion-free Cartan connection of type (H,Q)
induces a normal Cartan connection of conformal type (and the vice-versa); etc.

This work has already been done for two other groups on the list: G2,2 ⊂
SO0(3, 4) and Spin(3, 4) ⊂ SO0(4, 4). In [50], P. Nurowski constructed a confor-
mal class of metrics of signature (2, 3) from an undetermined system of ODEs of a
certain type. Nurowski’s construction took off from Cartan’s ”five variables paper”
[25], which in modern terminology associated to every generic rank 2 distribution
on a 5-manifold N , a Cartan geometry of type (G2,2, Q) for a certain parabolic
subgroup Q, cf. [20]. In this case, Q = P ∩ G2,2, and the conformal Fefferman
structure induced by this geometry is defined on the same manifold M = N . The
calculations of [50] show that the induced conformal Cartan connection is normal.

In [9], R. Bryant constructed a conformal a conformal class of metrics deter-
mined by generic rank 3 distributions on 6-manifolds. Again, this is a problem
inspired by work of Cartan; such structures have associated to them a canonical
Cartan geometry of type (Spin(3, 4), Q), where Q is the parabolic subgroup which
stabilizes a null line in R4,4, considering Spin(3, 4) as an irreducible subgroup of
SO0(4, 4). For this reason again, the conformal Fefferman space is the same as the
original 6-manifold. Bryant’s calculations show that the induced conformal Cartan
connection is normal. Moreover, it is proved that a normal conformal Cartan con-
nection for a conformal structure of signature (3, 3), if it admits a Cartan reduction
to Spin(3, 4), gives a normal Cartan connection of this type. I.e., the conformal
holonomy correspondence is complete for this group.
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Beyond the basic question of whether the conformal holonomy correspondence
holds for certain irreducible, transitive subgroups of SO0(p + 1, q + 1), one would
also hope to gain a better understanding of the geometries involved – that of the
base parabolic geometry, as well as the explicit form of the conformal Fefferman
metric. For the second part, the results on Weyl structures given here should prove
useful, as well as methods from Tractor calculus as in, e.g. [18].

In the case of QC structures, though, we lack an explicit description of the
canonical Cartan connection, which stands in the way of solving a number of natu-
ral and interesting questions. For example, note that the calculations in Chapter 4.3
also establish that the Fefferman space of type (H,Q) over a QC manifold (which
has fibers isomorphic to S2) is induced by a Cartan connection which is normal and
torsion-free, and hence determines an integrable CR structure of the appropriate
signature. On the other hand, a central part of Biquard’s results on QC structures
was the construction of such a bundle with CR structure (cf. Chapter II.5 of [6]:
“CR twistors”).

One expects that the CR structure of Biquard’s twistor space over a QC man-
ifold coincides with the induced CR structure via parabolic geometries, and the
general recipe of Chapter 4.4 should be applicable in verifying this, but some infor-
mation about the canonical QC Cartan connection (its explicit form with respect
to a “QC scale”) is needed for this, which is evident from the role played by the
Biquard connection in constructing the CR twistors. Similarly, such information is
required to relate the conformal Fefferman space of a QC manifold described here,
to the explicit class of metrics defined in Chapter II.6 of [6]. It should be possible
to give the canonical Cartan connection in terms of exact Weyl structures for QC
(or QC+) structures, using bundles of scales and the Biquard connection (cf. [6],
[37]), in analogy with the calculations for CR structures.

Information about the other parabolic geometries is relevant in particular for the
problem in conformal holonomy of presenting examples of conformal manifolds (or
better yet, compact ones) which realize the full holonomy groups for those in the
list above. To our knowledge, non-compact examples are not even worked out for
the holonomy group SU(p′+1, q′+1), which evidently can be done by constructing
a CR manifold of generic type, i.e. whose canonical Cartan connection has the full
holonomy.

Finally, there is the question of irreducible conformal holonomy groups which
don’t act transitively on the Möbius sphere. At one extreme, the question is if such
groups can occur at all. Alternatively, one would hope to formulate and prove re-
sults about the geometric structure of spaces having such holonomy. For example,
in Riemannian signature there is a geometric proof (cf. [51]) of the fact, which fol-
lows from the Berger list, that any Riemannian manifold with irreducible holonomy
which doesn’t act transitively on the sphere, is a local symmetric space. It would be
very nice (but probably over-ambitious) to find an analogous result for conformal
manifolds which could be generalized to all signatures.

A more realistic approach to the last questions is to try to answer them in par-
ticular signatures, e.g. Lorentzian signature. In particular, it can be shown that
SU(1, n+1) has no irreducible connected proper subgroups. Thus both the problem
of showing that a strictly pseudo-convex CR manifold has generic holonomy, and
that of describing the possible conformal holonomy groups in this signature, are
somehow simplified.
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An avenue of research which goes in a different direction from basic classification
and existence, but which is important especially from the differential geometric
viewpoint, is to find global analogs to the mainly local results dealt with here. For
one, this entails clarifying the topological conditions giving sharp obstructions to
the possibility of globally passing from CR or QC structures to CR+ and QC+

structures, respectively. For the QC case, it seems likely that the corresponding
results for quaternionic Kähler manifolds – cf. Section 3 of [59] as well as [47],
[55] – can be adapted. The other part of studying the global geometry would be
looking for (conformally invariant) conditions guaranteeing global extension of the
local isomorphisms established in Proposition 70.
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partielles du second ordre, Ann. Ec. Normale 27 (1910) 109-192.

82



[26] E. Cartan, Les groups projectives qui ne laissent invariante aucune multiplicité
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[57] J. Šilhan, Algorithmic computations of Lie algebra cohomologies, Rend. Circ.
Mat. Palermo Suppl. ser. II, 73 (2003) 191-197.
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