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1 [A3] Singularities in Manifolds with Special

Holonomy 2005-2008

1.1 Summary

In essence, the focus of the project A3 is a local one – we study singularities.
Motivated by physical phenomena like conifold transitions, one tries to stu-
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dy (or at least to obtain) deformations and, if possible, smoothings of these.
In the case of Calabi-Yau varieties arising from Batyrev’s construction, we
investigated special classes of ambient Fano varieties and established their
smoothability in codimension three.
Another point of view is that of Gross and Siebert who try to reduce mirror
symmetry to some duality in discrete mathematics. Their approach includes
the degeneration of Calabi-Yau varieties to reducible spaces. We considered
these non-normal singularities, too, and calculated their infinitesimal defor-
mation spaces. Further, smoothing families X̃ → Y of these reducible spaces
occur in our theory of T -varieties. Originally created as a generalisation of
toric varieties in order to dispose of the right framework to study toric de-
formations, the total spaces X̃ arise as certain partial resolutions of the T -
varieties under investigation.
The description of T -varities by polyhedral divisors on lower-dimensional va-
rieties helps to understand the configuration of T -orbits. This description
was given (in form of an equivalence of categories) in both the local and the
global case. Since the versal deformation (base and total space) inherits the
group action on the given space, the category of spaces with a fixed group
acting on them provides the suitable language for studying deformations,
rather than the category of toric varieties itself. In the latter, each variety
comes along with its own torus.
The formalism of derived categories provides a particularly elegant framework
for investigating mirror symmetry and D-branes. We studied the impact of
group actions also in this context. As a result we obtained an equivariant
theory of Fourier-Mukai functors, leading to applications in birational geo-
metry.
¿ From a Riemannian viewpoint, Calabi-Yau manifolds varieties are only one
example of special metrics which appear in the context of String-, M- or F-
theory compactifications. We investigated also special metrics arising in the
context of Hitchin’s variational principle. In particular, we found non-trivial
compact examples of so-called PSU(3)-metrics. Further, D-branes materiali-
se as calibrated submanifolds which generalise the algebraic geometric notion
of a complex subvariety and comprise, among other examples, special Lag-
rangian submanifolds. In view of generalising Floer homology to so-called
G2-metrics, we studied the deformation behaviour of their calibrated subma-
nifolds under boundary conditions.
Eventually, generalized Albanese varieties have been constructed. They pro-
vide a contraction of all cycles not contributing to linear representations of
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the fundamental group of a projective variety.

1.2 Current Knowledge

1.2.1 Smoothings and Degenerations of CYs

Batyrev’s construction of Calabi-Yau spaces out of reflexive polytopes yields
at first mostly singular varieties. Afterwards, the decent mirror pairs re-
sult from crepant resolutions of both partners. Another method to pro-
duce smooth Calabi-Yau varieties out of singular ones is to consider de-
formations along a flat family. Miles Reid even conjectures that the mo-
duli space of Calabi-Yau spaces is connected after allowing the conifold-
transitions mentioned above, i.e., both resolutions/contractions and defor-
mations/degenerations. Moreover, contraction plus smoothing is mirror dual
to degeneration plus resolution.

While resolutions do always exist and even crepantness at least can be
simulated via motivic integration, the construction of smoothings remains a
problem. Since one is eventually interested in the smoothing of 3-dimensional
Calabi-Yau varieties which are embedded as complete intersection in higher-
dimensional Fano varieties, this leads to the following problem: Given an
arbitrary Fano variety, for instance by a reflexive polytope, is it then possible
to find a deformation with the general fiber being smooth in codimension
three?

In [Nam97], Namikawa has shown that Gorenstein Fano threefolds with
at most terminal singularities are smoothable. However, to say something
about 3-dimensional Calabi-Yau varieties, one needs to consider Fanos of
dimension ≥ 4.

Another direction of research is the investigation of reducible spaces.
Their smoothability has first been considered by Friedman in the special case
of simple normal crossings, [Fri83]. The striking notion in this context was
that of d-semistability. Later on, the setting was generalized in [YN94] and
[GS07]. The latter paper is just the last in a row of papers dealing with the
idea of reducing mirror symmetry to the discrete Legendre transformation.
These papers relate degenerating families of Calabi Yau or Fano varieties to
certain topological manifolds with an affine structure (outside codimension
2) and a polyhedral subdivision. In particular, the question of smoothability
is dealt with.

However, both [YN94] and [GS07] use the concept of smooth log struc-
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tures. Hence, it is often not clear if the assumptions of their theorems apply
for a given situation. For example, even if the reducible variety comes from
a simplicial complex via the Stanley-Reisner construction, the log method
does not give any information about smoothability yet. Moreover, it is not
yet clear how to see the toric degenerations of Grassmannians in their lan-
guage.

1.2.2 The category of T -Varieties

In the last 20 years, the investigation of toric varieties grew to an important
branch of algebraic geometry. It provides nice classes of examples that are
approachable by combinatorics, and so theorems (and conjectures) in alge-
braic geometry can be translated into a completly different language. This
does often give new insight into the original problem.

The strength of toric geometry comes from the action of big tori on the va-
rieties – creating a huge amount of redundancy in the geometry. This means,
the variety does almost look like the torus itself, and the actual difference
can be measured by combinatorics. Algebraically spoken, the torus action
corresponds to a very fine multigrading of the coordinate rings. The homo-
geneous pieces become 1-dimensional (hence boring) vector spaces, and all
information about the rings is completely hidden in the structure of the set
containing the degrees.

On the other hand, the class of toric varieties is a very special one. To
cover a wider range of varieties, it pays to study n-dimensional varieties with
a lower, namely k(≤ n)-dimensional torus action. The goal of the program is
to develop a theory parallel to the toric program. However, since there is only
a k-dimensional “redundancy” involved, one expects to encode those varie-
ties by a k-dimensional combinatorics and an (n− k)-dimensional geometry.
Moreover, both sets of data are expected to interact.

One-codimensional torus actions, i.e. k = n − 1, have been investigated
from different points of view. In one of the early books about toric geometry,
Kempf et al. have associated to them a toroidal structure, i.e. analytically
locally the situation looked like toric again, and one could associate a fan-
like object to the variety. However, there was no one-to-one correspondence
between geometry and combinatorics anymore.

Later on, one-codimensional group actions, often referred to as “comple-
xity one” actions, were dealt with for the case of surfaces, [FZ03a], [FSZ07],
and in the context of spherical varieties, [Arz97], [Tim97]. The latter means
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that the torus is replaced by a reductive group, and the complexity measures
the codimension of the action of a Borel subgroup. In particular, the original
spherical varieties are those of complexity 0 then.

Eventually, the same problem was treated in symplectic mathematics,
too. Here, in [KT03], one has even studied the case of complexity ≤ 2.

1.2.3 Group actions and Derived Categories

It is quite common that a group acts on the data one wants to study. Usually,
part of the interest goes then to the existence and properties of the quotient.
In algebra and algebraic geometry, group actions and their quotients have
long been studied, leading to Geometric Invariant Theory which generalises
the classical invariant theory from algebra.

From the point of view of derived algebraic geometry, where the derived
categories of coherent sheaves of varieties are considered as interesting objects
of study, examining group actions is fruitful, as well. In particular, the topic
of equivariant equivalences (Fourier-Mukai transforms) has been targeted.

The most basic result on group actions and derived categories is the cele-
brated derived McKay correspondence by Bridgeland, King, Reid [BKR01].
As it provides a statement on quasi-projective varieties, it is valuable both
in the local and the global case.

Concerning equivariant Fourier-Mukai transforms, one case of actions on
surfaces (covering actions coming from the canonical bundle) has been stu-
died in [BM98].

1.2.4 Special metrics in low dimensions

We consider Riemannian metrics which are induced by differential forms en-
joying special algebraic properties. This approach is particularly fruitful in
dimensions less than or equal to 9. Important examples which can be treated
in this framework are for instance, G2–, spin(7)– or Calabi–Yau–manifolds (in
dimensions 7, 8 or 2m respectively) which play an important rôle in Rieman-
nian geometry. In physics, these geometries naturally appear in connection
with flux compactifications of heterotic/type I string– or M–theory. We focus
mainly on the investigation of topological and geometrical properties of ma-
nifolds with special metrics, construction of (compact) examples, the study
of special (“calibrated”) submanifolds, and the interplay between different
special geometries in low dimensions.
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To define Riemannian metrics by means of forms is a viewpoint parti-
cularly emphasised in recent work by N. Hitchin. This led, for instance, to
Hitchin’s variational principle [Hit01] whose critical points characterise spe-
cial geometries in low dimensions. This principle was taken up by Dijkgraaf
et al. [DGNV05] in their proposal of topological M–theory and form theories
of gravity. A further application of [Hit01] gave rise to the so–called Hit-
chin flow which links weakly integrable Calabi–Yau metrics in dimension 6
to G2–manifolds. The link between these special metrics in dimension 6 and
7 was more closely investigated in terms of intrinsic torsion conditions by
Chiossi and Salamon in [CS02]. These materialise as field equations in hete-
rotic/type I string–theory and were successfully used to construct examples
of string compactifications on dimension 6 by Cardoso et al. [CCD+03]. Com-
pact examples of G2– and spin(7)–manifolds were constructed in the seminal
work of Joyce [Joy00]. Strongly connected with the form point of view is the
notion of a calibrated submanifold introduced by Harvey and Lawson [HL82].
They play an important rôle in string– and M–theory, where they account for
branes. Both for mathematical and physical reasons, the deformation theo-
ry of calibrated submanifolds is an important problem, an issue which was
settled by McLean for normal deformations [Mcl98].

1.2.5 Generalized Albanese Varieties

We consider a smooth projective variety X defined over the complex numbers.
There exists a universal cover X̃ → X. Unfortunately, this map is NOT a
morphism of algebraic varieties, unless the fundamental group π1(X) is finite.
Even worse, the universal cover X̃ is in general not an algebraic variety.
All these effects can be observed in the case of algebraic curves. Thus, a
description of the universal covering in terms of algebraic geometry seems
quite hard.

In topology there exists a CW-complex K(G, 1) which is determined by
the group G. For any CW-complex X there exists a map X → K(π1(X), 1)
which induces an isomorphism of fundamental groups. It is this map we want
to generalize. Its existence in the case of abelian fundamental groups is given
by the classical Albanese morphism.

7



1.3 Results and their Interpretation

1.3.1 Smoothings and Degenerations of CYs

In [vS06] we have introduced so-called flag quivers. They are characterized
by the presence of exactly one source and sink among the vertices. The pro-
jective toric varieties associated to the corresponding flow polytopes are then
special singular Fano varieties. Our main result is that the affine cones over
those varieties are always smoothable in codimension three. Under certain
additional, easily checkable conditions on the quiver, those smoothings do
also exist in degree 0, i.e. they provide smoothings (in codimension three) of
the original projective variety itself. The extra condition asks for the exis-
tence of detours avoiding certain vertices in the given quiver. A special case
of the smoothings obtained by the above theorem is the toric degenerations
of Grassmannians.

Another direction of research was the investigation of Gröbner degenerati-
ons of Calabi Yau varieties. In the diploma thesis [Joh07], we have addressed
this question for hypersurfaces in projective toric varieties given by (reflexi-
ve) polytopes. For a given term order, Sturmfels has shown that the ambient
space degenerates into a monomial scheme related to a certain subdivision
of the given polytope. The corresponding limit of the hypersurfaces provides
a codimension one subcomplex of this subdivision. The result of the thesis
was that not all those complexes are obtained that way.

Finally, in [AC04] and [Stu05], we have investigated the deformation theo-
ry of the most degenerated, namely the monomial ideals. While in the former
paper the infinitesimal deformation and obstruction spaces were calculated,
we used Gröbner basis methods for studying the true adjacency relations
of these monomial ideals in (multigraded) Hilbert schemes. We have approa-
ched the 1-skeleton of these Hilbert schemes by studying the space of so-called
edge-ideals connecting two given monomial ideals.

1.3.2 The category of T -Varieties

In [Hau06], we have established an equivalence of categories between affine
varieties with an effective T -action, on the one hand, and so-called polyhedral
divisors D on the Chow quotient Y = X/T satisfying a certain positivity
condition. Turning the latter objects into a category required the definition of
morphisms. This could be done in a very natural way which is strongly related
to the toric situation. In particular, the face relation among the polyhedral
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coefficients of the divisors plays an important rôle. As usual, it refers to open
embeddings among the T -varieties.

In the paper [AHS06], we make use of the face relation mentioned above
and describe arbitrary T -varieties as glueings of affine, open, T -invariant sub-
sets. For this, one has to adapt the notion of a polyhedral divisor: Their poly-
hedral coefficients are now promoted to polyhedral complexes. An important
example for X is the Grassmannian Grass(d, k) with its (C∗)k−1-action. If
d = 2, then Y becomes the moduli space M0,k of k-pointed, stable rational
curves, the participating prime divisors are those arising from partitions of
the k points, and the polyhedral coefficients are related to the Weyl chambers
of the corresponding root system, [AH06].

The case of a complexity one action was investigated in [Vol07]. The
result is an easy way to obtain Kempf’s fan of the toroidal method from the
polyhedral divisor. The description via polyhedral divisors contains some
more information – this is essential for being able to recover the T -variety
from the combinatorial data.

The description of T -varieties (affine or not) by polyhedral divisors pro-
vides another feature. The combinatorial structure of the polyhedral coeffi-
cients reflects nicely the T -orbit decomposition of X. In particular, analo-
gously to the case of toric varieties where orbits correspond directly to faces,
this makes it possible to observe their adjacency relation and to get hands
on the orbit closures. The report [Alt07] covers this material and describes a
possible relation of polyhedral divisors to the FM-transform among derived
categories.

1.3.3 Group actions and Derived Categories

There is a consistent theory of equivariant Fourier-Mukai transforms in the
case of finite group actions [Plo07]. The results have been applied to Hilbert
schemes and provide some statements about their birational geometry.

Also, by Balmer’s theory [Bal05] on can associate to any tensor triangu-
lated category a ringed space. This has been examined, among other cases,
in [Sos07] for finite group actions. The resulting spectrum of the equivariant
category is the variety divided by the group action. This is remarkable inso-
far as the equivariant category is equivalent to the derived category on the
smooth stack: Spec(DG(X)) = X/G and DG(X) ∼= Db([X/G]).
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1.3.4 Special metrics in low dimensions

We found a compact, non–symmetric example of a PSU(3)–metric, a pro-
blem risen by Hitchin. Further, we showed that this type of geometry is
similar in nature to quaternionic Kähler geometry in dimension 8, in as far
as both are characterised by the existence of certain Rarita–Schwinger fields.
This gave a new characterisation of quaternionic Kähler metrics in dimension
8. As a result, we could derive a new integrability condition on their Ricci
tensor.

Further, we studied the deformation theory of calibrated submanifolds
of a G2–manifold, whose boundary is constrained to lie in a fixed second
calibrated submanifold. This constitutes the first step towards a construction
of an analogue for G2–manifolds of Floer homology in symplectic geometry
(joint work in progress with D. Gayet (ICJ Lyon)).

1.3.5 Generalized Albanese Varieties

The main result is Theorem 4.2 in the article [Hei06] which says that a certain
determinant line bundle Lr (see the methods section) is nef. Furthermore, it
is trivial only on those curves ι : C → X with the property that any family
ES of semistable vector bundles on S × X gives a locally constant family
when restricted to S × C.

If we consider the following relation � on nef line bundles by saying
L1 � L2 when C.L1 > 0 =⇒ C.L2 > 0 for all curves ι : C → X, then
we obtain Lr � Lr+1 for all positive integers r. Thus, we obtain a limit line
bundle L∞ with Lr � L∞ for all r and L∞ � Lr for r � 0. Tsuji’s nef
reduction provides us now with a rational version of the Albanese variety.

1.4 Applied Methods

1.4.1 Smoothings and Degenerations of CYs

In [AvS00] we had calculated several invariants for polytopes. Some of them
have an interpretation as graded pieces of infinitesimal deformations (T 1) or
obstruction spaces (T 2) of the toric varieties associated to the given polytope.
Then, in [vS06] we investigated flow polytopes arising from quivers. For them,
the above invariants were better approachable, and we could use the vanishing
of certain graded pieces of T 1 and T 2 to decide when the T 2 space is not large
enough to obstruct the glueing of local smoothings to a global one.
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Usually, one can say something about unobstuctedness only if T 2 = 0.
However, this was not the case in our class of singularities. In most examples,
T 2 does not vanish at all. To obtain our results it was necessary to control
the distribution of T 1 and T 2 with respect to the multidegrees induced by
the torus action.

1.4.2 The category of T -Varieties

Our project aims at torus actions of arbitrary complexity (this means a gene-
ralization since otherwise the complexity was bounded by 2). The description
of an n-dimensional variety X admitting a k-dimensional torus action is ba-
sed on an (n−k)-dimensional variety Y carrying the information of X modulo
the redundancy provided by the torus action. If X is toric, then Y is a point.
In the general situation, Y is the “Chow quotient” X/T . If X is affine, the
latter means that Y sits over all GIT quotients with respect to the different
linearizations of the trivial line bundle.

As in the toric case, the combinatorial information about X is encoded
as polyhedral objects in the lattice N ∼= Zk that is the dual of the character
lattice of the torus. Moreover, there is an interaction between Y and the
combinatorial part. The ultimative datum representing the T -variety X is a
Cartier divisor D on Y with coefficients being polyhedra in N ⊗Z R.

1.4.3 Group actions and Derived Categories

Apart from the methods provided by the papers quoted above, standard
methods from representation theory and from modern algebraic geometry
and homological algebra apply, [Huy06], [?].

1.4.4 Special metrics in low dimensions

The main machinery employed to study the geometrical properties of special
metrics consists of principal fibre bundle theory and representation theory
of compact Lie groups. Further, spin geometric techniques often prove high-
ly useful when investigating the curvature of such metrics, and are crucial
to make contact with physics, where spinors naturally arise in supersymme-
tric models. The investigation of topological obstructions to the existence of
such metrics, as well as their topological properties, involves the standard
techniques of homotopy theory, topological K–theory and characteristic clas-
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ses. Moreover, construction of compact examples or deformation theory of
submanifolds often makes use of elliptic PDE theory.

1.4.5 Generalized Albanese Varieties

We considered the Albanese variety as the moduli space of line bundles on
the Picard torus of X. This way, we obtain the classical Albanese variety and
all its properties. As it is natural in algebraic geometry we try to construct
functions on K(π1(X), 1) in order to present the space as the spectrum of
the ring generated by these functions.

As usual we could consider only a subring (a sequence of subrings) by
using representations π1(X) →GLr. Let us sketch the construction shortly:
We consider a very ample curve Yr ⊂ Mr(X) in the moduli space Mr(X)
of all semistable rank r bundles on X. Normalizing this curve, we obtain a
universal family on Yr ×X. Using the theory of generalized Theta functions
on the moduli space of vector bundles on curves, we obtain a determinant
line bundle Lr on X.

1.5 Individual Projects

1.5.1 Smoothings and Degenerations of CYs

1.5.2 The category of T -Varieties

1.5.3 Group actions and Derived Categories

1.5.4 Special metrics in low dimensions

1.5.5 Generalized Albanese Varieties

1.6 Relations within the SFB

1.6.1 Special metrics in low dimensions

In cooperation with Simon Chiossi (HU-Berlin, SFB 647, Project A2) and
with Anna Fino (Torino), we are investigating possible relations between
G2 - and PSU(3) - structures. Both geometries arise as ciritical points of
Hitchin´s variational principle and have connections to hyperkähler geometry
in dimension 4.
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1.7 Relations to other Research Work

1.7.1 Smoothings and Degenerations of CYs

The relation to Gross’ and Siebert’s approach to mirror symmetry was alrea-
dy mentioned.

1.7.2 The category of T -Varieties

Flenner and Zaidenberg have developed a similar theory for the special case
of k = 1, n = 2. Our language is related, but different. Thus, a generalization
becomes possible.

1.7.3 Special metrics in low dimensions

Although PSU(3)–structures arise in the same way as G2–structures via
Hitchin’s variational principle and are akin to quaternionic Kähler structures
in dimension 8 as pointed out above, they also seem to fit into more exotic
patterns and to relate to SO(3)–structures in dimension 5, see for instance
[?] or [Nur06].

1.7.4 Generalized Albanese Varieties

The book [Kol95] of Kollár was an inspiration for this work. There a Sha-
farevich map was constructed. However, one has to exclude countably many
proper cycles from X which leaves classical algebraic geometry. However,
there exists a map Sh(X) → Albr(X) form Kollárs Shafarevich spaces to our
generalized Albanese variety.

Eyssidieux considers in [Eys04] the situation for Kähler manifolds and
derives results on the holomorphic convexity of covers of X. Kollár remarked
that Eyssidieux’s result shows that the above constructed morphisms are re-
gular morphisms and not only rational morphisms.
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2 Seit 2008

2.1 Summary

While smoothings of toric singularities are important in physics, the category
of toric varieties is to small for carrying a good deformation theory. Thus, it
was generalized to the concept of T -varieties, and we would like to study their
deformation theory as well as their divivisors and vectorbundles. Moreover,
we would like to study minimal resolutions of singularities in the framework
of derived and triangulated categories. This creates new objects filling the
gap of non-existing geometric varieties.

One major part of the present project is the investigation of T -varieties.
They are a common generalization of two well known constructions in alge-
braic geometry – the theory of (generalized) cones over projective varieties
describing so-called good C∗-actions and the theory of toric varieties. While
the latter translates algebro-geometric facts or problems into discrete, poly-
hedral concepts, the general theory of T -varieties reduces the dimension of
the algebro-geometric part. If the torus action is k-codimensional, then one
has to deal with k-dimensional varieties and certain, additional polyhedral
objects. This language has been established in both the local and the global
case, and it lead to a good understanding of the configuration of the T -orbits.
This generalization of toric varieties was necessary because in A3 we were
going to study deformations and smoothing of toric varieties (and their sub-
varieties that occurr in string theory), but this naturally goes beyond the
scope of toric varieties: Since versal deformations (base and total space) in-
herit the group action on the given space, the category of spaces with a fixed
group acting on them provides the right language for studying deformations
rather than toric varieties coming with their individual tori.
Taking this as a major motivation for studying T -varieties, the first task is
to investigate their deformation theory. However, understanding T -varieties
as direct generalizations of the well-established theory of toric varieties, one
should follow the general “toric program” and try to save as possible into
the generalized situation. In the present project, we would like to begin with
studying divisors and vectorbundels on T -Varieties. In particular, this is ex-
pected to help finding explicit equations of the smoothings of the singular
toric varieties we have proven to exist in the previous A3 project.
The project A3 does focus on local, singular phenomena. Having just dis-
cussed deformations of singularities, one is also interested in resolving them.
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While resolutions do always exist, for physical reasons one needs only tho-
se being as small as possible. However, the higher the dimension, the more
seldom those “crepant” resolutions do exist. Hence, we try to replace this
concept by a simulated resolution in the context of derived and triangulated
categories. In case of quotient singularities this is related to the celebrated
MacKay correspondence.

A physical interpretation of geometrical singularities can be given within
the set-up of F-theory compactifications. The gauge symmetry is then the
corresponding A-D-E group, and charged matter is localized along codimen-
sional stratified submanifolds. Therefore the study of the (non canonical) re-
solution process of singularities for Calabi-Yau fourfolds and the classification
of the cases for which a crepant resolution exists should enlarge the reservoir
of known Calabi-Yau manifolds, suitable for string and M/F-theory compac-
tifications. The study should also lead to new insides into F-theory/heterotic
duality, which suggests a correspondence between gauge and gravitational
anomalies and the Euler characteristic of the elliptic Calabi-Yau manifolds.

2.2 Current Knowledge

2.2.1 Divisors and Vectorbundels on T -Varieties

In [Hau06] and [AHS06], we have developed the affine and global theo-
ry of T -varieties, respectively. The idea is to encode the redundancy of
a k-dimensional torus (T -) action on an n-dimensional variety X in a k-
dimensional combinatorics, i.e. in polyhedral objects contained in the cha-
racter group of the torus or rather in its dual N ∼= Zk. The remaining in-
formation is reflected in an (n − k)-dimensional, quasi-projective variety Y
(the Chow quotient of X by T ) and, for affine X, a polyhedral divisor on Y .
The latter means a divisor on Y whose coefficients are polyhedra in N ⊗ R,
i.e. are exactly the combinatorial objects mentioned before. If X is not affine
anymore, then the polyhedral coefficients have to be replaced by polyhedral
subdivisions of N ⊗ R – each cell reflecting an affine chart in X.

The special case n = 2, k = 1 was treated, in a slightly different language,
by Flenner and Zaidenberg in [FZ03b] and [FSZ07]. In the case of an affine
surface X, they distinguished between an elliptic, parabolic, and a hyperbolic
C∗-action. In the terminology of polyhedral divisors, this corresponds to Y
being a projective or an affine curve and to the tail cone being equal to R≥0

or {0}, respectively.
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The special case of n = k means that X is a toric variety. Toric Geometry
means to deal with X by translating everything into combinatorics – and,
indeed, in the above language, the case n = k means that Y is a point. This
allows no divisors on Y , and the information of its combinatorial coefficients
collapses to the asymptotic behavior of the polytopes or the subdivision,
namely to their tail cones or fans, respectively.

For the cases n = 2, k = 1 and n = k, there exist descriptions of PicX,
equivariant vector bundles and their cohomology. In the toric case, these are
classical results. The case of C∗-actions on surfaces was treated by Flenner
and Zaidenberg.

2.2.2 Deformation Theory of T -Varieties and Equations of Gene-
ralized Grassmannians

The deformation theory of (smooth) complex manifolds may be understood
as varying the complex structure of the underlying real manifold. The de-
formation theory of singular spaces on the other hand is useful to study
smoothings or at least “improvements” of the often quite unpleasant sin-
gularities. In both cases, the general philosophy is that there should be a
semi-universal deformation over some base space that includes all possible
directions of deformation, which provides important invariants. In the case
of complex manifolds or of isolated singularities, the base and total space
of the deformation turn out to be decent finite-dimensional complex spaces
or schemes. Nevertheless, their structure can be complicated, e.g. singular,
reducible, or even non reduced.

The notion of T -varieties seems to provide the right framework for a
natural understanding of the already existing deformation theory of toric va-
rieties. To deform an affine toric variety associated with a polyhedral cone
σ ⊆ N ⊗ R, one has to choose a degree R ∈ M and study the Minkowski
splittings of the cross cut σ ∩R−1(1).

In the case of a T -variety, the space T 1 of infinitesimal deformations as
well as the space T 2 of obstructions inherit a multigrading by the character
group M of the torus T . In the case of a good (elliptic) C∗-action on a surface
(k = 1, n = 2), Jonathan Wahl [Wah76] has obtained a description of these
vector spaces as cohomology groups of certain sheaves on the quotient T .
Similarly, combinatorical descriptions for T 1 and T 2 do already exist in the
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toric case, i.e. n = k.

2.2.3 Matter and the Geometry of Calabi-Yau Fourfolds

Presently there are 4 different ways to obtain four-dimensional theories with
N = 1 supersymmetry from string/M/F-theory: compactification of the
E8 × E8 heterotic string, M -theory on G2 manifolds, F -theory on Calabi-
Yau (CY) fourfolds and various intersecting D-brane models. In the course
of study of these theories various dualities between them have been obtained.
For instance, M -theory on G2 is expected to be dual to the heterotic string
compactified on a T 3 fibered CY-space. Another example is the heterotic
string/F-theory duality which leads to a correspondence between elliptically
fibered CY n-folds X together with stable vector bundles V (with struc-
ture group G contained in E8 × E8) and elliptically fibered CY (n+1)-folds
Y , which has to admit a section H of ADE singularities. On the heterotic
string side H corresponds to the observed gauge group (i.e., the centrali-
zer of G in E8) under which matter is charged. In other words the chiral
matter content of the physical theory is reflected in the singularity struc-
ture of Y . To establish the correspondence it is assumed that the elliptic
fibrations admit a section σ which does not meet the critical points of the
fibers. The case n = 1, 2 has been established by D. Morrison and C. Vafa
[Vaf96],[MV96a],[MV96b] as well as S. Katz and C. Vafa. The investigations
for n = 3 started with the work of R. Friedman, J. Morgan und E. Witten
[FMW97] and have been continued in [BJPS97],[AC98] [AC99]; as a result,
the comparison of the respective moduli spaces gives a relation between the
Hodge-numbers of X and Y and first order deformations of V . A comparison
of the physical anomalies led to a relation between the Euler characteristic
of Y and the secondary Chern-classes of X and V .

To every elliptically fibered CY three- or fourfold (with section) one can
associate a Lie group G with representation ρ of G. The group is determi-
ned from the Weierstrass model which has singularities that are generically
rational double points. These double points lead to local factors of G and
are given by either the corresponding ADE groups or some associated non-
simply laced groups. Further, ρ is a sum of representations coming from the
local factors of G and of other representations which can be associated to
curves and points in the discriminant divisor at which the singularities are
worse than generic. The vanishing of all anomalies in the physical theory
constraints the geometry of possible CY three- or fourfolds and leads to a
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surprising relation between the CY spaces and the representations ρ. In par-
ticular, this gives an explicit formula for the Euler characteristics of the CY
spaces in terms of ρ. A proof for CY threefolds has been given by A. Gras-
si und D. R. Morrison [GM00]. In joint work with G. Curio [AC99] a new
method for computing Euler characteristics of CY fourfolds was developed.
Moreover, it was possible to give a geometrical proof of a formula for Euler
characteristics of certain CY fourfolds which A. Klemm, B. Lian, S.-S. Roan
and S.-T. Yau derived in [KLRY98] using toric geometry. A further result
of [AC99] is a method which allows to compute the Euler characteristics of
(singular) surfaces which are embedded into compact complex manifolds of
dimension three

2.2.4 Triangulated Resolutions of Singularities

If X is a germ of an normal surface singularity, then there exists a unique
minimal resolution π : X̃ → X; every other resolution factors via π. Besides
the fact that uniquness is always nice, this means that X̃ combines the ad-
vantage of being a smooth object, on the one hand, with that of being still
close enough to the original X, on the other. In particular, information being
read from X̃ is not much “contaminated” by artificial content arising from
unneccessary further modifications.

In higher dimension, this nice and convenient behaviour fails. If the sin-
gularity X is a canonical Gorenstein singularity, then crepant resolutions is
the right notion replacing minimality at least partially. While crepant reso-
lutions are not unique (e.g. X = V (xy − zw) ⊆ C4), they do still the job of
being a resolution avoiding unneccessarily big exceptional sets. For instance,
they preserve the Calabi-Yau property, and they provide the “right” Hod-
ge numbers. However, besides their non-uniqueness, the existence of crepant
resolutions is not granted and rather seldom in dimension ≥ 4.

2.2.5 The Degree Stratification on the Toric Hilbert Scheme

Arising from an idea of Arnold, in the 1990s different authors (Peeva, Still-
man, Sturmfels, et al) studied the so-called “Hilbertscheme”. This scheme
parameterises ideals with a fixed multigraded Hilbertfunction, which equals
the Hilbertfunction of some ideal I of a given point configuration A. This pa-
rameter space first of all contains all specialisations of I obtained by Gröbner
degeneration. These correspond to a choice of term orders on A and are clo-
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sely related to the combinatorial structure of the Secondary Polytope of the
configuration A. In particular, these specialisations form a so-called ‘cohe-
rent’ component of the toric Hilbertscheme. As are all further components,
this one is toric itself and is described by the already mentioned Secondary
Polytope.

In the meantime research done by Alexeev has picked out the other com-
ponents which do not contain the original ideal I as a central theme. They
are given by generalised Secondary Polytopes. But the different components
possess curious intersection behaviour. In general it does not have the form
of a polyhedral complex. By now research by Santos has shown that the toric
Hilbertscheme need not be connected; like other base spaces of deformations
it is not necessarily reduced. Using a flip construction it is possible to “run”
along the edge ideals through the Hilbertscheme – an effective computer
program for this has been written (“Tigers” by MacLagan and Thomas).

2.3 Expected Results and their Intepretation

2.3.1 Divisors and Vectorbundels on T -Varieties

Since the theory of toric varieties is a natural special case of the theory of
T -varieties or polyhedral divisors, there is the general plan to follow the toric
program and generalize it to the case of lower-dimensional torus actions.

Since polyhedral divisors have been developed along the lines of toric
varieties, one should continue to follow the whole toric program. In particular,
one should understand divisors, rational equivalence, the Chow ring, sheaves
and their cohomology, singularities and their resolutions and deformations.
Since the above method includes also non-affine T -varieties, it should provide
a useful tool to construct equivariant compactifications. Moreover, one could
try to understand equivariant vector bundles and their Chern classes. A good
knowledge of these would lead to an understanding of the moduli space of
coherent sheaves via the localization method.

The description of non-affine T -varieties required the choice of an affine,
open, T -invariant covering – and the result does truely depend on it. Is there
any weakening of the data that corresponds to a forgetting of this choice?

One should establish the relation to Fourier-Mukai transforms. If this
became true, then the whole method would apply to other classes of varieties
going beyond torus actions.
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Eventually, T -varieties might become important in coding theory. There
are already approaches using toric varieties – and our method (for complexity
one actions) could be used to mix them with codes coming from curves.

In particular, in this part we are aiming for an understanding of equivari-
ant Weil- and Cartier divisors on X (to be distinguished from the polyhedral
divisor on Y which is part of the datum determining X), to a description of
Pic X, and, eventually, to a theory of equivariant vector bundles or coherent
sheaves on T -varieties.

2.3.2 Deformation Theory of T -Varieties and Equations of Gene-
ralized Grassmannians

For deformations of toric varieties, the torus T acts on the total space of the
versal deformation, which hence allows a description in terms of polyhedral
divisors. In particular, this language provides a more natural framework for
studying deformations. So, a first task is to transfer existing results about to-
ric deformation theory into the language of polyhedral divisors. Furthermore,
we want to understand how to combine different one-parameter deformati-
ons, in particular in the case of non-negative degrees. This should allow us
to describe the components of the versal deformation as T -varieties.

Furthermore, we would like to use the multigrading by the character group
M of the torus T to understand the infinitesimal deformation space T 1 as well
as the space T 2 containing the obstructions for deforming X. These vector
spaces or their M -homogeneous pieces should be described as cohomology
groups of certain sheaves on Y .

In their work on the minimal model program, Gavin Brown and Miles
Reid have found a class of four parameter smoothings of certain reducible,
singular surfaces consisting of toric components [Bro06]. The total space is
six-dimensional and carries a four-dimensional torus action. Understanding
these varieties via polyhedral divisors will provide examples of interesting
deformations of toric varieties and allow us to approach the problem of com-
bining one-parameter deformations of toric varieties. More importantly, this
example suggests that T -varieties with the language of polyhedral divisors
might prove useful in even more applications, including the minimal model
program.

Another aim of our research of deformations of toric varieties is to obtain
explicit description of smoothings where we only have existence results so
far. In [vS06], we have proven that certain singular toric varieties provided
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by quivers are smoothable in codimension three, cf. Report A3-??. An inte-
resting special case is that of a toric degeneration of the Grassmannian to a
quiver variety, which is also observable with the methods of varying polyhe-
dral divisors mentioned above. Since the Grassmannian has a nice, explicit
description by the Plücker relations, we would like to find similar equations
for the general smoothings of toric quiver varieties.

2.3.3 Matter and the Geometry of Calabi-Yau Fourfolds

In case of elliptic surfaces with a section the types of possible degenerated
fibers (corresponding to the extended Dynkin-diagrams of type A-D-E) ha-
ve been classified by Kodaira. The goal of this project is to study the (non
canonical) resolution process for CY fourfolds and to classify the cases for
which a crepant resolution exists, thereby enlarging the reservoir of known
CY fourfolds suitable for string and M/F-theory compactifications. Further-
more, an expected relation between certain group representations and Euler
characteristics of CY fourfolds should be studied.

The aim of this project is to study elliptically fibered CY fourfolds Y
of the following structure: the base B of Y is assumed to be a P1 bundle
B → B2 with section R where B2 is given by a rational surface (for instance
the Hirzebruch-surface or del Pezzo surface). Further it is assumed that the
elliptic fibration π : Y → B has a section which does not intersect with the
critical points of the fibration. Now if one assumes that all fibers of Y are
irreducible then Y can be shown to be isomorphic to its Weierstrass model
πo : Y0 → B (together with a morphism F : Y → Y0 with π0 ◦ F = π). The
Weierstrass model is determined by a line bundle L on B and by two sections
g2, g3 of L⊗4 and L⊗6 satisfying 4g3

2 +27g2
3 6≡ 0. CY fourfolds of this kind have

been studied for instance in [FMW97], [DGW96], [Gra97], [AC99], [AC98].
If one allows degenerate fibers then the question occurs when does a cre-

pant resolution of singularities of the Weierstrass model exist, that is, resolu-
tions which preserve the canonical class of Y . This question will be studied in
this project, in particular, sufficient conditions for crepant resolutions should
be derived. Degenerate fibers of elliptic surfaces with one section have been
classified by Kodaira; the irreducible components of the fibers are smooth ra-
tional curves with transversal intersection and whose dual graph corresponds
to an extended Dynkin-diagram of type ADE. In case of CY fourfolds one
expects that the dual graph corresponds to new fibers which did not oc-
cur in Kodaira’s list. For instance, if R is a component of G2 = div(g2),
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G3 = div(g3), D = div(4g3
2 + 27g2

3) and if G2 = R + S, G3 = aR and S, R
have transversal intersection, then a crepant resolution exist for a even. The

dual graph corresponding to the fiber over 0 is given by
1• − 2• − 1• and does

not occur in the surface case.
After these investigations it is planned to compute the topological inva-

riants (Chern classes and Euler characteristics) of the spaces with an eye
on physical applications. The computation of the Euler characteristics can
essentially follow the lines of [AC99] using a stratification method. This me-
thod uses the structure of the fibers and that the Euler-characteristic behaves
well under addition and multiplication; the Euler characteristics χ(Fi) will
be computed for every fiber type which occurs over the corresponding stra-
tum Di. χ(Di) can be computed using the so-called “Plücker formulae” for
surfaces derived in [AC99].

The investigations in this project will enlarge the reservoir of CY fourfolds
and will lead to new models for string theory. The computation of the Eu-
ler characteristics and Hodge numbers of the spaces will give mathematical
evidence for the relations expected from physical duality. Moreover, a classi-
fication of divisors with arithmetic genus equal to 1 will give new examples
of non-perturbative superpotentials in M/F-theory compactifications.

2.3.4 Triangulated Resolutions of Singularities

It is an idea of Bondal to focus on the derived category D(CohX̃) of cohe-

rent sheaves on a resolution X̃ rather than on the true geometric resolution
X̃ itself. If one has a good notion of smoothness of a triangulated category,
then this broadens the concept of resolutions to a categorial point of view.
This might have two effects: First, certain new “triangulated resolutions”
might occur, i.e. given by smooth triangulated categories being not derived
categories of a geometric situation. Second, certain different geometric (e.g.
small, crepant) resolution might induce the same derived category, i.e. as tri-
angulated resolutions they are becoming identified, cf. [Bri02]. In particular,
Bondal’s conjecture is that minimal triangulated resolutions do always exist.

We would like to investigate the existence of unique, minimal resolutions
in the context of triangulated categories or, as a first step, in the context of
K-theory.

Eventually, we would also like to study the situation of normal surface
singularities. Here, as said in the beginning, the existence of minimal reso-
lutions is no problem – but here we are able to study their behavior under
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deformations, e.g. on the Artin component. Every information we can exploit
out of the derived categories of the minimal resolutions of the fibers might
be a fact that generalizes to the minimal triangulated resolutions and would
show their meaning.

2.3.5 The Degree Stratification on the Toric Hilbert Scheme

The project at hand should at first apprehend the curious intersection be-
haviour of the components of the Toric-Hilbert Scheme in the language of
the Secondary Polytopes. In this context it would be interesting and maybe
helpful to examine the stratification given by the maximal grading. On the
coherent component this reflects the exact orbit stratification; on the other
components I expect more detailed information. Three special cases seem to
be clear: If the toric grading is maximal then the corresponding ideal has to
be an “inner point” of the coherent component. In the other extreme case,
if the maximal grading is given by Zn (with n = #A) then it is a monomial
ideal. These are the most special points of the Hilbertscheme and they are
spread over all components. Lastly we also understand the n−1 dimensional
gradings. These correspond to the edge ideals, which form a frame inside the
Hilbertscheme, see [Stu05].

A local description of the toric Hilbertscheme was coined by Peeva and
Stillman – in a neighbourhood of monomial ideals. This description should be
compared to the base space of the versal deformation. For squarefree mono-
mial ideals formulas for T 1 and T 2 (describing the infinitesimal theory) have
already been found, see [AC04]. Especially results in the isolated points of the
Hilbertscheme constructed by Santos would be interesting. Corresponding to
that, does T 1 = 0 hold as well?

2.4 Methods

2.4.1 Divisors and Vectorbundels on T -Varieties

The theory of polyhedral divisors is a useful tool to study equivariant com-
pactifications of T -varieties. In particular, the comparison of line and vector
bundles on X and on those compactifications X seems to be interesting. Mo-
reover, these methods look promising for an investigation of framed bundles
on X ⊆ X. A goal on the horizon could be the usage of the localization theo-
rem to obtain information about the moduli space of all (framed) bundles.
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The equivarint ones form the fixed point set within this space. Maybe, the
understanding of these moduli spaces goes so far to produce strong invariants
of X distinguishing it from different complex structures.

In the special case of X being the Russell cubic, the understanding of
the moduli space of framed bundles was a (not finished) project of Kur-
ke/Lehn/Teschke to provide another approach to its exotic C3 structure. We
hope that our concept might help here. The Russell cubic admits a C∗-action,
with Y becoming the blow up of C2 and the tail cone being {0}.

2.4.2 Deformation Theory of T -Varieties and Equations of Gene-
ralized Grassmannians

While the notion of splitting polytopes into Minkowski summands showed
up somewhat surprisingly in the language of, for instance, [Alt97], it shows
up naturally in the context of T -varieties: If X is given by a polyhedral
divisor D on Y = P1, and if D equals the sum of the prime divisors {0}, {1},
{∞} with polyhedral coefficients ∆0, ∆1, ∆∞, respectively, then moving the
prime divisors on P1 as Dt := ∆0⊗{0}+∆1⊗{t}+∆∞⊗{∞} creates a flat
family Xt with the non-toric X as fiber over the starting configuration t = 1.
For t → 0, i.e., when two of the prime divisors coincide, the corresponding
coefficients are replaced with their Minkowski sum. The special fiber X0

described by D0 = (∆0 +∆1)⊗{0}+∆∞⊗{∞} is a “toric configuration” on
P1, that is, the torus action can be upgraded to turn X0 into a toric variety.
Polyhedral divisors also help in understanding one-parameter deformations
in non-negative degrees: Here, the total space is not toric, however, it does
admit an action of the torus that acts on the special fiber. This results in a
polyhedral divisor on A1×P1 with a non-toric configuration of prime divisors.

2.4.3 Triangulated Resolutions of Singularities

The method used by now is to look for minimal triangulated resolutions of a
singularities among those triangulated categories having a certain meaning,
i.e. arising quite naturally from X. For instance, if X is a quotient singularity,
then one might enforce the McKay-correspondence of [BKR01] by conside-
ring the equivariant derived category on the smooth space where the group is
acting on. Another possibility is to enforce tilting theory by looking for a tri-
angulated category among those describing modules over non-commutative,
finite-dimensional algebras, cf. [SvdB06]. In the case of a rational singularity
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X, Kuznetsov used in [Kuz06] special semiorthogonal decompositions of the
derived category D(CohE) if E is the exceptional set of some (geometric)
resolution. Eventually, in [Kal06] there is also a symplectic approach to this
problem. This indicates a possible collaboration with symplectic projects of
the SFB.

Our approach to construct minimal triangulated resolutions is different.
Starting with a singularity X and two true geometric resolutions πi : X̃i → X
(i = 1, 2), we would like to construct a (not minimal yet) triangulated reso-

lution T that lies under both T1 = D(CohX̃1) and T2 = D(CohX̃2). Then,
we need a generalization of this method to construct such a T even for non-
geometric T1 and T2. Eventually, some numerical invariant is needed to ensure
that the whole process will stop after finitiely many steps. A first approach
to this plan is the investigation of e.g. four-dimensional, toric, canonical Go-
renstein singularities that do not allow crepant resolutions. Here one can
consider pairs of toric resolutions and try to construct a T as mentioned
before.

2.4.4 The Degree Stratification on the Toric Hilbert Scheme

A useful approach would be to study the versal base space of monomial
ideals in such settings, where this one is already known – e.g. for the Stanley-
Reisner-ideal of the simplicial partition of S3 with 7 vertices. Is it possible
to see the stratification of the grading?

In algebraic geometry deformationtheory is understood functorial. Are
there subfunctors which might collect rather easy deformations, e.g. exactly
the Gröbner degenerations? One approach has recently been made by Olsson
from Berkeley to, for example, realise strictly the coherent component of the
toric Hilbertscheme functorial. How does then or in Olsson‘s example the
tangentspace look like?

Finally there is yet a link to the topics “Divisors and Vectorbundels on
T -Varieties and “Deformation Theory of T -Varieties and Equations of Ge-
neralized Grassmannians”. In the last years an encoding of affine varieties
with torus action by using polyhedral divisors on lower dimensional varieties
has been constructed in [Hau06] . Concretely, these are the usual Cartier
divisors – but one also allows convex polyeder with Minkowskisum structure
as coefficients. Fibrations arise within as intermediate steps, which have to-
ric varieties as fibers (or, in some special points, are unions of those). The
coherent component seems to be an universal object for such a fibration –
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this means our construction should induce a mapping into this component.
In this context it would be important to know why the other components do
not appear. Or conversely, what happens when I start with a family contai-
ned in a different component – do I get at least a construction similar to a
polyhedral divisor? For this the known characterisations of morphisms into
toric varieties should be used (Cox; A’Campo/Hausen/Schröer).

2.5 Projects

2.5.1 Divisors and Vectorbundels on T -Varieties

2.5.2 Deformation Theory of T -Varieties and Equations of Gene-
ralized Grassmannians

2.5.3 Matter and the Geometry of Calabi-Yau Fourfolds

2.5.4 Triangulated Resolutions of Singularities

2.5.5 The Degree Stratification on the Toric Hilbert Scheme
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