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1 [A4] Quasilinear Wave Equations, Membra-
nes, and Supermembranes 2005-2008

1.1 Summary

Models from String Theory and other unified theories are closely interre-
lated with geometric partial differential equations of elliptic, parabolic and
hyperbolic type. This opens up many new unforeseen and intriguing possi-
bilities for exploiting the link between the mathematics of Ricci and Mean
Curvature Flows on the one hand, and the physics of Einstein’s equations
and relativistic (super)membranes on the other.

An "m-brane” describes the motion of an m-dimensional spacelike sub-
manifold in an (m+k+1)-dimensional Lorentzian manifold according to an
action integral which is proportional to the (m+1)-dimensional invariant vo-
lume of the worldsheet swept out by the evolution of the submanifold (the
so-called “Nambu-Goto-action”).

These extended relativistic objects are of strong mathematical interest
while at the same time they play an important role as ”D-branes” in modern
string theory, allowing for a better understanding of the nonperturbative
aspects of the theory. For the relativistic membrane (m=2) in a target space
of m+k+1=11 dimensions there exists a maximally supersymmetric gene-
ralisation of this theory, the "supermembrane”. This theory extends string
theory significantly in that it contains the known superstring models in 10
dimensions (ITA, IIB and heterotic) as well as the maximal supergravity theo-
ry in 11 dimensions as special limits. At the same time, it was shown to be



related to (supersymmetric) matrix models. For this reason, it is hoped that
supermembrane theory may serve as a basis for a truly non-perturbative and
unified description of the fundamental interactions of physics.

From the point of view of differential geometry and analysis the equati-
on of motion for the (bosonic) membrane is the relativistic minimal surface
equation, that is the equation of vanishing mean curvature for the world vo-
lume. This is a system of quasilinear hyperbolic equations of second order
with a structure that is in many respects analogous to the classical Einstein
vacuum equations in General Relativity, but has not yet been carefully stu-
died from this point of view. While physicists have been aware of the links
between membrane theory and matrix theory for some time, this connection
remains to be exploited in the context of pure mathematics and differential
geometry.

The first part of this project wants to utilize recent progress in analysis to
understand the analytical and geometrical properties of solutions to specific
models of theoretical physics such as p-branes in Lorentzian manifolds. This
includes the solution of the Cauchy problem for timelike minimal surfaces in
a general setting, and also the clarification of the role of diffeomorphisms as
gauge transformations. Further open questions concern the longtime behavior
of solutions and their asymptotic decay, the stability of stationary solutions
and the existence of periodic solutions. In all these questions it will be of
particular interest how the nonlinear nature of the equations influences the
behavior of solutions.

In a second, and closely related part of the project, the connections bet-
ween membrane theories and the SU(N) matrix model approximation are to
be studied (the membrane is obtained as a limit of the matrix model as N
tends to infinity). Among the outstanding problems to be addressed are the
following: (1) understanding the precise nature of the large N limit of the ma-
trix model, and in particular the question of how the membrane topology is
reflected in the matrix model; (2) the quantization of the (super-)membrane
and the existence of the large N limit, and (3) the question of target space
Lorentz symmetry, and how this symmetry is recovered in the large N limit
in the quantum theory.



2 Seit 2008

2.1 Summary

Models from String Theory and other unified theories are closely
interrelated with geometric partial differential equations of elliptic,
parabolic and hyperbolic type. This opens up many new unforeseen and
intriguing possibilities for exploiting the link between the mathematics
of Ricci and Mean Curvature Flows on the one hand, and the physics of
Einstein’s equations and relativistic (super)membranes on the other.
The first part of this project wants to utilize recent
progress in analysis to understand the analytical and geometrical
properties of solutions to specific models of theoretical physics such
as p-branes in Lorentzian manifolds. During the first funding period
the Cauchy problem for timelike minimal surfaces was solved in a very
general setting, and the role of diffeomorphisms and gauge freedom for
the solutions was clarified [1]. It became apparent that the structure
of timelike minimal surfaces is intimately related to Einstein-Vacuum
spacetimes on the one hand, but on the other hand also to analogous
parabolic systems such as the Ricci flow and mean curvature flow as well
as to the B-field models investigated in the project B4.

In a second, and closely related part of the project, the connections
between membrane theories and SU(NN) matrix model approximation will
be studied, in particular, the quantization of the (super)membrane

and the question of Lorentz invariance and other target space symmetries.
This part of the project builds on earlier work by H. Shimada [2,3] which
was partially supported by this SFB.

2.2 Current Knowledge

2. Eigene Vorarbeiten
In his thesis [1] O. Milbredt investigated the Cauchy problem for
submanifolds of a Lorentzian manifold which have an induced Lorentzian
metric and vanishing mean curvature. Such submanifolds are often
called timelike minimal surfaces and are used as models for the worldvo-
lume
of p-branes arising from the Nambu-Goto action in String Theory.



Milbredt proved the existence and uniqueness of shorttime solutions
for given general space-like initial submanifolds and time-like initial
tangent fields for the worldvolume. The method uses a harmonic gauge
for the worldvolume to turn the vanishing mean curvature equation
into a strictly hyperbolic quasilinear system. existence and uniqueness
is then first shown in this particular gauge, a general geometric
uniqueness result then follows from the construction of suitable
diffeomorphisms from a more general gauge to the harmonic gauge.
Crucial for the proofs is the deveolpment of suitable quantitative
notions of ”space-like” for the initial submanifold and ”time-like” for
the initial tangent-field to the worldvolume, which then lead to a
priori estimates for the solutions in certain Sobolev-spaces. The work
of Milbredt extends work by M65533;1ler [4] on the worldsheet of strings,
the shorttime existence in Minkowski space by Lindblad [5], stability
of timelike minimal surfaces by Brendle [6], Xin [7], and existence
results by Hoppe-Nicolai [8].

As for part two of the project, it has been known for a long time that
the theory of relativistic membrane can be equivalently described as
the N — oo limit of certain SU(N) matrix models [9,10].

This result can be used to set up a quantization scheme for the
supermembrane. In [11] it was shown that for the unquantized
supermembrane moving in a Minkowskian embedding space-time,
Lorentz invariance in target space is recovered in the limit

N — o0, and for totoidal membranes it was shown

that the terms violating Lorentz invariance go like 1/N in this

limit. More recent work of Shimada [2] (partially supported by this SFB)
has established the precise link between membrane topology and the
eigenvalue spectrum of the matrix theory. Exploiting these results,

it should now be possible to extend previous results in this direction
to membranes of arbitrary genus.

2.3 Methods

3. Forschungsprogramm
After the Cauchy problem for timelike minimal surfaces is solved in a
general context, it is natural to ask for the longterm behaviour of
solutions. Specific questions concern the existence and uniqueness of
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a maximal Cauchy development for given initial data and a characterisa-
tion

of its boundary. Singularities are known to occur for general initial

data, but little is known about their precise structure. In particular,

it would be interesting to investigate the (in)stability of the membrane

against formation of string-like “spikes” which is responsible for

the continuity of the spectrum of the quantized supermembrane [12].

For the first part of the project it is

planned to use techniques that have been fruitful in studies of the

Einstein equations to find conditions that imply singularities and to

find optimal gauges such as harmonic gauge or constant mean curvature

gauge to analyze the behavior of solutions near singularities. It will

also be interersting to investigate whether an additional B-field on

the ambient manifold coupled to the vanishing mean curvature equation

can serve to prevent certain singularities. Finally, following the work

of Brendle [5], it is planned to investigate noncompact branes and

their asymptotic decay behavior near infinity. A nontrival model case

for such timelike minimal surfaces are surfaces close to the

2-dimensional catenoid in Euclidean 3-space, extended as a static

solution of the time-like minimal surface equation to (3+1)-Minkowski

space. It is hoped that the nonlinear stability of this static solution

is somewhat easier to study than the nonlinear stability of the

Schwarzschild solution in the case of the Einstein equations, while

still exhibiting some of the nonlinear features of that problem.

The second part of the project will try to exploit the recent results
obtained by Shimada and others. In particular, it will focus on the
following questions:

e Approximating the PDE describing membrane evolution by a system
of N x N matrix ODE’s, can one re-obtain the PDE results
derived previously (existence theorems, smoothness, etc.)
by taking the limit N — oo, and for arbitrary
topologies of the membrane and can one establish more quantitative

estimates in this limit?



e Can one quantitatively study and describe the formation of
singularities in the matrix approximation? And what would be the
physical significance of such singularities, for instance, in
application to the scattering of membranes? An important role here
is played by topology changing singularities, for which the splitting
and joining of strings in string scattering amplitudes a la Mandelstam

are simple analogs.

e The matrix theory is known to become Lorentz invariant in
the limit N — oo at least for toroidal membranes [11].
Can one establish a similar result for arbitrary topology of
the membrane, and furthermore study quantitatively how this
limit is attained? Any progress in this direction would be an
important step towards understanding the fate of Lorentz invariance
for the quantized membrane, where Lorentz invariance could be broken
by quantum effects (that is, anomalies, similar to the ones forcing the

string to live in special ‘critical dimensions’).

2.4 Cooperations within the SFB
4. Vernetzung im SFB

to

The equations for mappings and submanifolds related to the B-field in
project B4 are from an analytical point of view of the same quasilinear
nature involving the Laplace-Beltrami operator as the equations for

the membrane. In particular harmonic maps play again an essential role,
so that a continued collaboration is expected. For example, it is planned
to explore whether a B-field as considered in the PhD thesis of Koh in
project B4 coupled to the membrane equation considered in this project
can be adressed with the techniques of Milbredt and whether they lead

interesting new properties of solutions in the Lorentzian setting.



Further collaboration is expected with B3, where other nonlinear partial
differential equations are studied that require similar analytical tools.
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