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1 [B6] Analytic and Spectral Properties of

Geometric Operators 2005-2008

1.1 Summary

In project B6 we study relations between analytic properties of geometrically
and physically relevant differential operators and the geometry of the under-
lying manifold. The questions under consideration include analytic properties
of operators on singular and possibly incomplete manifolds as well as inverse
spectral problems.

1.2 Results and their Interpretation

Among the results obtained so far are path integral representations of soluti-
ons to the heat equation on compact manifolds and spectral approximation
facts for incomplete hyperbolic 3-manifolds. We have studied overdetermined
equations such as twistor-spinors on orbifolds and transversal Killing spinors.
This links our work to project A2. We have studied the solution space to the
Seiberg-Witten equations from a geometric perspective.

Moreover, we have obtained several inverse spectral results: ”Positive” re-
sults concerning spectral rigidity properties of biinvariant metrics and spec-
tral determination of orientability of closed hyperbolic surfaces, as well as
”negative” inverse spectral results concerning spectral nondetermination of
total integrability of geodesic flows and of the maximal order of singularities
in compact orbifolds.
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Path integrals on manifolds.

Let M be a compact Riemannian manifold without boundary, let E → M
be a Riemannian or Hermitian vector bundle with compatible connection ∇.
Let H be a selfadjoint generalized Laplace operator, i. e. an operator of the
form H = ∇∗∇ + V where V is a potential (symmetric endomorphism field
on E).

The main result of [BP08] can formally be stated as follows: The solution
to the heat equation

∂U

∂t
+HU = 0

with initial condition
U(0, x) = u(x)

is given by the path integral

U(t, x) =

1

Z

∫
Cx(M,t)

exp

(
−1

2
E(γ) +

∫ t

0

(
1

3
scal(γ(s))− V (γ(s))

)
ds

)
· τ(γ)0

t · u(γ(t))Dγ.

Here Cx(M, t) is the space of all continuous paths γ : [0, t] →M emanating
from x, E(γ) denotes the energy of the path γ, τ(γ) is parallel translation
along γ, Dγ is a formal measure on Cx(M, t) and Z is a normalizing constant.

Such formulas are very common in the physics literature but there are
various problems with a rigorous mathematical interpretation:

• Cx(M, t) is an infinite dimensional space and the meaning of the mea-
sure Dγ is unclear,

• E(γ) and τ(γ) are not defined for continuous paths without differentia-
bility properties,

• 1
Z

is infinite.

It is well-known that 1
Z

exp
(
−1

2
E(γ)

)
Dγ yields a well-defined measure

on path space Cx(M, t), the Wiener measure. Parallel transport τ(γ) can
be treated using stochastic differential equations. This then generalizes the
Feynman-Kac formula, see e. g. [DT01].

In [BP08] one follows a different approach which does not make use of
any stochastics. One approximates Cx(M, t) by finite dimensional spaces of
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geodesic polygons. It turns out that the formally identical integrals over
these finite dimensional spaces approximate the solution to the heat equation.
The necessary analysis can be organized nicely using a classical theorem of
Chernoff’s [Che68]. The short time asymptotics of the heat kernel also play
an important role.

This technique allows one to derive different versions of the path integral
formula. For example, one can remove the scalar curvature term if one uses
another measure on the approximating spaces of geodesic polygons. This clea-
rifies a discussion in [AD99] where the path integral formula has been proved
by different methods in the special case of the Laplace-Beltrami operator
acting on functions.

As an application one finds a very simple and natural proof of the Hess-
Schrader-Uhlenbrock estimate for the heat kernel by the kernel of a scalar
comparison operator, see [HSU80]. Moreover, one can express the trace of
the heat operators by a path integral. Formally,

Tr(e−tH) =

1

Z

∫
Ccl(M,t)

exp

(
−1

2
E(γ) +

∫ t

0

(
1

3
scal(γ(s))− V (γ(s))

)
ds

)
tr(hol(γ))Dγ.

Here Ccl(M, t) denotes the space of closed continuous loops in M , parametri-
zed on [0, t], and hol(γ) is the holonomy of such a loop γ. One might hope
that this formula will yield a new proof of the Atiyah-Singer index theorem
using ideas from the physics literature [Wit99].

Further open problems concern path integral formulas in the presence of
a boundary (e. g. with Dirichlet boundary conditions) or for the Friedrichs
extension on a possibly incomplete manifold.

The Laplacian on incomplete hyperbolic 3-manifolds.

Let M∞ be a complete non-compact hyperbolic 3-manifold of finite volu-
me, and let Def(M∞) denote the deformation space of (possibly incomplete)
hyperbolic structures on M∞, for a precise definition see [CHK00]. These in-
complete structures are said to have Dehn surgery type singularities, special
cases include hyperbolic cone-manifold structures and in particular smooth
hyperbolic structures on certain topological fillings.

Now, Def(M∞) carries a natural topology, and by Thurston’s Cusp Clo-
sing Theorem (see [Thu78]) there are sequences (Mn)n of closed hyperbolic
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3-manifolds such that Mn → M∞ as n → ∞ in Def(M∞) (after one has
removed certain closed geodesics from the Mn).

On M∞ the Laplacian ∆M∞ is essentially self-adjoint, and its spectrum
has the form spec

(
∆M∞

)
= {0 = λ0 ≤ λ1 ≤ . . . λk < 1} ∪̇ [1,∞) (see

[HD79] and [LP82]).
For M ∈ Def(M∞) we consider the Friedrichs extension of ∆ : C∞

c (M) →
L2(M) and we denote it by ∆M . As the ends of M are foliated by tori
an argument involving separation of variables (similar to an argument in
[Bär00]) shows that ∆M has discrete spectrum.

Now, we are interested in the behavior of spec(∆M) as M → M∞ in
Def(M∞). Answers to this question have already been given in [BC91] and
[CD94] in the case thatM∞ is approximated by closed hyperbolic 3-manifolds
as in the Cusp Closing Theorem. In [PW07] these results are generalized
to the situation when M → M∞ in Def(M∞). One obtains that the small
eigenvalues (i. e. those below 1) of M converge to the small eigenvalues of
M∞, one gets a clustering of the eigenvalues above 1 of the M and one
computes the accumulation rate in terms of geometric data.

A singularity theorem for twistor-spinors.

Let Mn be an n-dimensional Riemannian orbifold. Assume it to be spin: for
orbifolds with singularities of codimension greater than 2 this is equivalent to
their smooth part being spin (this is the first preliminary result of [BGR07]).
Fix the spin structure and let ΣM be its spinor bundle, ” · ” its Clifford
multiplication,∇M the canonical covariant derivative on ΣM and D its Dirac
operator.

A twistor-spinor on M is a smooth section ψ of ΣM satisfying

∇M
X ψ = − 1

n
X ·Dψ

for all X ∈ TM . We aim at understanding the geometric conditions imposed
by the existence of such a spinor field on M . The main result of [BGR07]
may be stated as follows:

Assume Mn compact, n ≥ 3 and that a non-zero twistor-spinor ψ exists
on Mn with zero in p. Then the following holds:

1. The zero-set of ψ is reduced to {p} and p is singular unless Mn is
conformally equivalent to the round sphere Sn.
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2. For every point q 6= p one has

|Γq| ≤ |Γp|,

where Γq is the singularity group of q in Mn.

Moreover |Γq| = |Γp| for some q 6= p only if Mn is conformally equiva-
lent to a quotient of Sn through a finite subgroup Γ of SOn+1.

Transversal Killing spinors.

Let (M, g, ξ) be an n + 1-dimensional spin Riemannian flow (Riemannian
manifold endowed with a unit smooth vector field ξ satisfying the Killing-
type equation g(∇M

X ξ, Y ) = −g(∇M
Y ξ,X) for all X, Y ∈ ξ⊥). Let ΣM denote

its spinor bundle, ” · ” its Clifford multiplication, ∇ the transversal covariant
derivative on ΣM and D its Dirac operator. The covariant derivative ∇ may
be defined by the following relations:

∇M
ξ ϕ = ∇ξϕ+ 1

2
Ω · ϕ+ 1

2
ξ · ∇M

ξ ξ · ϕ

∇M
Z ϕ = ∇Zϕ+ 1

2
ξ · ∇M

Z ξ · ϕ.

for all Z ∈ ξ⊥, where the 2-form Ω on ξ⊥ is defined by Ω(Y, Z) := g(∇M
Y ξ, Z)

and ∇M denotes the canonical covariant derivative on TM or ΣM .
For real α, β we call (α, β)-transversal Killing spinor on (M, g, ξ) any

smooth section ψ of ΣM satisfying

∇Xψ = αg(X, ξ)ξ · ψ + β ξ ·X · ψ + βg(X, ξ)ψ

for all X ∈ TM . Our aim is two-fold: on the one hand we want to understand
which geometries support transversal Killing spinors, on the other hand we
want to derive upper eigenvalue estimates by testing the min-max principle
on those spinors, in order to compare the result with O. Hijazi’s lower bound
[Hij95] involving the energy-momentum tensor. One of the motivations for
this work consists in looking for examples where this lower bound is sharp
but not T. Friedrich’s one [Fri80] in terms of the scalar curvature solely.

The main spectral result [GH07c] in the setting of Sasakian manifolds (see
[GH07b, GH07a] for general as well as 3-dimensional flows) may be stated
as follows:

Assume the existence of a non-zero (α, β)-transversal Killing spinor ψ on
a 2m+ 1-dimensional compact Sasakian spin manifold (M, g, ξ).
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1. The smallest eigenvalue λ1(D
2) of D2 satisfies

λ1(D
2) ≤ α2 + 4m2β2 +

m2

4
+ α

∫
M
〈ξ · Ω · ψ, ψ〉vg

Vol(M)
.

2. The equality can only occur if β = 0. In that case, the Sasakian manifold
(M2m+1, g, ξ) is η-Einstein and if moreover α 6= 0 then

λ1(D
2
M) = inf

M\Zφ

(
ScalM

4
+ |Eφ|2),

where Zφ := {x ∈M |φx = 0} and Eφ is the 2-tensor field defined on
M \ Zφ by Eφ(X, Y ) := <(〈Y ·∇M

X φ,
φ
|φ|2 〉) for all X, Y ∈ Γ(TM). In

particular O. Hijazi’s estimate [Hij95] must be sharp.

The Dirac spectrum of SU(2)/Q8.

Let M := SU(2)/Q8, where Q8 denotes the (finite) group of quaternions.
It is a 3-dimensional spin compact connected homogeneous space carrying
a 3-parameter-family of homogeneous Riemannian metrics and 4 different
spin structures. We aim at computing the spectrum - or at least the smal-
lest eigenvalue - of the Dirac operator for the so-called Berger metrics. The
motivation for this work comes from the study of the limiting-case of C.
Bär’s upper bound [Bär98] (see below) in terms of the mean curvature for
hypersurfaces in spaceforms. Indeed M can be naturally embedded in S4

and constitutes the simplest example after geodesic spheres and generalized
Clifford tori of hypersurfaces in Sn where both the mean curvature and the
Dirac operator can be computed. The main result of [Gin08] dealing with
this question can be stated as follows:

The smallest eigenvalue λ1(D
2) of the Dirac Laplacian of M equals 9

4
for

any minimal embedding M ↪→ S4 and w.r.t. the induced spin structure. In
particular any such embedding satisfies the equality in the following estimate
due to C. Bär [Bär98]:

λ1(D
2) ≤ 9

4Vol(M)

∫
M

(H2 + 1)vg,

where H denotes the mean curvature.
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The geometry of Seiberg-Witten moduli spaces.

Let (M, g) be a compact Riemannian 4-manifold with a fixed SpinC-structure
P . The perturbed Seiberg-Witten equations are coupled nonlinear elliptic
equations for a connection A ∈ A(detP ) and a positive spinor ψ ∈ Γ(Σ+),
perturbed by a parameter µ+ ∈ Ω2

+(M ; iR). The Seiberg-Witten premoduli

space M̃µ+ ⊂ A(detP )×Γ(Σ+) is the solution space of those equations. The

Seiberg-Witten moduli space, which is the quotient of M̃µ+ by the action of
the gauge group G = C∞(M ;U(1)), is well known to be a compact, generically
smooth manifold. The Seiberg-Witten bundle P →Mµ+ is an isomorphism

class of principal U(1) bundles on Mµ+ , represented by the quotient of M̃µ+

by the based gauge group

Gx0 := {u ∈ C∞(M ;U(1)) |x(x0) = 1} ,

x0 ∈ M being arbitrary. The Seiberg-Witten invariant is a differential-
topological invariant of Mµ+ , given by evaluation of the Euler class of P
on the fundamental cycle of Mµ+ . For generic smooth families of perturbati-
ons, the parametrized moduli space Nµ+ :=

⊔
t∈[0,1]Mµ+(t) is also a smooth

manifold.
The aim of our work was to refine the knowledge about the moduli space

Mµ+ from only differential-topological to geometrical properties. In [Bec07],
natural constructions for Riemannian metrics on the spacesMµ+ ,P and Nµ+

are given: The infinite dimensional premoduli space M̃µ+ naturally inherits
a weak Riemannian metric from the L2-metric on the configuration space
C = A(detP ) × Γ(Σ+). As a quotient of M̃µ+ , the Seiberg-Witten moduli
space can be given a quotient metric, which is indeed a Riemannian metric.
To obtain similar constructions for Riemannian metrics on P and Nµ+ , these
spaces need to be represented as good quotients from subspaces of the con-
figuration space C. E.g. for π1(M) = 0, the isomorphism class P → Mµ+ is
shown to have a natural geometric representative, the total space of which is
a quotient of a subspace of C admitting a quotient metric.

After giving constructions for those representations, it is shown, that the
Riemannian metrics constructed on Mµ+ ,P and Nµ+ fit nicely together: The
bundle projection π : P → Mµ+ is a Riemannian submersion. The metric
induced by the inclusion of the slice t = t0 in Nµ+ coincides with the metric
constructed on Mµ+(t0), provided the slice is a smooth manifold.

In the case of a Kähler manifold (M, g), Seiberg-Witten monopoles are
well known to be representable in terms of holomorphic data. For perturba-

7



tions µ+ = iπλ · ω along the Kähler form, these representations yield to the
identification of the moduli space Mµ+ as a CP n-fibration over the torus
H1(M ; iR)/H1(M ; 2πiZ).

For manifolds with b+2 (M) > 1, the parametrized moduli space Nµ+ is
generically a smooth cobordism between the moduli spaces Mµ+ for different
values of the perturbation µ+. In case b+2 (M) = 1, it has conical singularities
along the wall of those perturbations admitting reducible solutions to the
Seiberg-Witten equations. As is well known e.g. from work by Okonek and
Teleman [CO96], if b+2 (M) = 1 and b1(M) = 0, the moduli spaces Mµ+

collaps to a point as the perturbation approaches the wall.
In [Bec07], it is shown that this collaps indeed occurs in the intrinsic

Riemannian metrics of the slices of the cobordism Nµ+ ; i.e. the diameter of
the slices tends to 0 as the perturbation approaches the wall.

Finally, the main result of [Bec07] states, that on a Kähler surface (M, g),
our quotient L2-metric on the regular part of the moduli space Mµ+ is itself a
Kähler metric. This is proven by means of infinite dimensional generalizations
of the symplectic resp. kählerian reduction, following similar work by Hitchin
[Hit86]. Symmetry arguments imply, that for M = CP 2 with the Fubini-
Study metric and P = P0 ⊗O(1), the quotient L2-metric on Mµ+ = CP 2 is
the Fubini-Study metric.

Local spectral rigidity of biinvariant metrics.

An important open conjecture in spectral geometry says that a symmetric
space of compact type is uniquely determined by the spectrum of the asso-
ciated Laplace operator on functions. A special case that has been studied
extensively is that of the round sphere. By using heat invariants, S. Tanno
verified the conjecture for standard spheres in dimension six and lower, and
demonstrated in 1980 that in all dimensions, the standard metric is locally
spectrally determined within the class of all metrics on Sn [Tan80].

A natural class of symmetric spaces are compact Lie groups equipped with
a biinvariant metric. D. Schüth had shown in [Sch01] that there do not exist
non-trivial continuous isospectral deformations of a biinvariant metric within
the class of left invariant metrics on a compact Lie group. This infinitesimal
rigidity result leaves open the question of whether a biinvariant metric might
be locally spectrally determined within the class of left invariant metrics.
In collaboration with C.S. Gordon and C.J. Sutton we have proved that
this is indeed the case [GSS10]. Hence, within the class of left invariant
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metrics on a compact Lie group G, any metric g 6= g0 that is isospectral to a
biinvariant metric g0 must be sufficiently far away from g0. (In contrast, there
do exist continuous isospectral families of left invariant metrics [Sch01].) In
the special case of compact simple Lie groups we have obtained a still stronger
local rigidity result: The biinvariant metric on a simple compact Lie group is
locally determined among left invariant metrics of at most the same volume
by the first two nonzero eigenvalues 0 < λ1 < λ2 (ignoring multiplicities) of
the associated Laplace operator.

Spectrum and orientability.

We recall that the spectrum of the Laplace operator on a compact Rieman-
nian manifold determines, among other invariants, its total scalar curvature.
In the case of closed oriented surfaces, the Gauss Bonnet formula thus im-
plies that the spectrum determines the topology of the surface. Intriguingly,
however, it is an open question whether the spectrum determines orientabi-
lity in the first place – for surfaces as well as for Riemannian manifolds of
arbitrary dimension. In the case of surfaces with boundary, P. Bérard and
D.L. Webb had given examples of Neumann isospectral flat surfaces with
boundary, one of which is orientable and the other not [BW95]. In colla-
boration with P.G. Doyle, J.P. Rossetti proved that in the case of closed
hyperbolic surfaces, the spectrum of the Laplace operator on functions does
indeed determine whether the surface is orientable or not [DR08]. The proof
extensively uses the Selberg trace formula and estimates on the growth of
the length spectrum of a compact hyperbolic surface.

Spectrum and geodesic flows.

The singularities of the wave trace on a Riemannian manifold are contained in
the set of lengths of closed geodesics on the manifold. Asymptotic expansions
of these singularities near such a length yield, under suitable nondegenera-
cy assumptions, geometric information on the set of closed geodesics of this
length; see, e.g., the foundational article by H. Duistermaat and V. Guille-
min [HD75] or the survey article [Zel04] by S. Zelditch.

Closed geodesics thus being at the focus of the wave invariants, it is na-
tural to ask to which extent integrability properties of the dynamical system
given by the geodesic flow of a Riemannian manifold are determined by spec-
tral data. In particular, it was an open problem whether complete integrabi-
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lity of the geodesic flow in the sense of Liouville is a property determined by
the Laplace spectrum on functions. We have proved in [Sch08] that this is
not the case: There exists a pair of compact closed isospectral Riemannian
manifolds M,M ′ such that M has completely integrable geodesic flow, while
M ′ does not have completely integrable geodesic flow. More precisely, the
manifolds M and M ′ in our counterexample are compact, eight-dimensional,
two-step Riemannian nilmanifolds. For both manifolds M and M ′ we have
also analyzed the structure of the submanifolds of the unit tangent bundle
given by maximal continuous families of closed geodesics with generic ve-
locity fields. The structure of these submanifolds turns out to reflect the
above (non)integrability properties. On the other hand, their dimension is
larger than that of the Lagrangian tori in M , indicating a degeneracy which
might explain the fact that the wave invariants do not distinguish an integ-
rable ¿from a nonintegrable system here. Finally, we have shown that for M ,
the invariant eight-dimensional tori which are foliated by closed geodesics
are dense in the unit tangent bundle, and that both M and M ′ satisfy the
so-called Clean Intersection Hypothesis.

Singularities of isospectral orbifolds.

To which extent does the Laplace spectrum determine the geometry of a
compact Riemannian orbifold, and, in particular, the structure of its singu-
larities? There exist some positive results in this direction. E. Dryden and
A. Strohmaier showed that on oriented compact hyperbolic orbifolds in di-
mension two, the spectrum completely determines the types and numbers of
singular points [DS05]. By a result of E. Stanhope, only finitely many isotropy
groups can occur in a family of isospectral orbifolds satisfying a uniform lower
bound on the Ricci curvature [Sta05]. On the other hand, there exist arbitra-
rily large (finite) families of mutually isospectral Riemannian orbifolds such
that each of these contains an isotropy group which does not occur in any
of the other orbifolds of the family [NS06]. More precisely, for the maximal
isotropy orders occurring in the orbifolds of such a family, the corresponding
isotropy groups all have the same order, but are mutually nonisomorphic.
A natural question arising in this context is whether the spectrum might
nevertheless determine the size of the maximal isotropy groups. J.P. Rosset-
ti, D. Schüth, and M. Weilandt have succeeded in showing that this is not
the case; see [RSW08]. In that paper, we give several kinds of examples of
isospectral connected orbifolds with different maximal isotropy orders. Some
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of these arise from a version of the famous Sunada theorem and are orbifolds
quotients of suitable normal homogeneous spaces; other examples belong to
the category of flat orbifolds and are shown to be isospectral by explicit com-
putation, using formulas developed earlier by R. Miatello and J.P. Rossetti.
In the latter type of examples, the orbifolds are not isospectral on 1-forms.

2 Seit 2008

2.1 Expected Results and their Intepretation

Despite the many results obtained a lot of questions remain open. The tech-
nique developed in [BP08] to derive path integral formulas has turned to be
quite flexible and powerful. We plan to elaborate on it to shed light on the
following questions:

• In the case of manifolds with boundary how are boundary conditions
reflected in the path integral?

• How does a path integral formula look like for the Friedrichs extension
on an incomplete manifold?

• Is it possible to derive the Atiyah-Singer index theorem from the path
integral for the trace of the heat operator?

• Can one make the physicist’s ”Wick rotation” rigorous and obtain a
path integral for the solution to the Schrödinger equation in this geo-
metric context?

Here path integrals are always to be understood in the sense of finite dimen-
sional approximation as in [BP08]. A rather ambitious question would be if
one can define an “integral over surfaces” rather than paths by looking a tri-
angulations of the surface whose mesh tends to zero. An affirmative answer
to this question would be an important breakthrough since it would allow
to make path integrals in string theory rigorous where they are often used
on a heuristic level. In this situation stochastic techniques are not available.
One would then have to check how such definitions of the path integral relate
to competing definitions from spectral geometry such as the ones based on
regularized determinants, see e.g. [BS03].
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It is also planned to continue the investigation of the analysis of geometric
operators on incomplete manifolds. Incomplete manifolds often arise as the
regular part of a singular space. Classical work on this topic (e. g. [Che83] or
the work of the schools of Melrose and of Schulze) typically makes rather rigid
structural assumptions on the space like being an orbifold or a cone manifold.
We will try to replace this by softer assumptions on geometric quantities
like isoperimetric constants in order to show properties like essential self-
adjointness, Fredholmness etc.

In project B4 important progress was obtained on the harmonic map flow
coupled to a Deligne cohomology class (or gerbe). If the class has degree two
this describes magnetic geodesics, in degree three one has coupled the kinetic
energy to what is known in string theory as a B-field. It turned out that a
better geometric understanding of concepts like fiber integration in Deligne
cohomology or covariant derivatives of sections in Deligne classes is necessary.
It is planned to work this out.

In the area of inverse spectral geometry, we plan to investigate several
other questions which have remained open. In the context of [GSS10] we will
try to extend our local spectral rigidity result which we obtained there for
biinvariant metrics. More precisely, we will study the questions whether the
metric on a (locally) symmetric space of compact type is infinitesimally (or
even locally, or even globally) spectrally rigid within homogeneous (or even
within arbitrary) Riemannian metrics on the manifold. Local symmetry is
a property of the Riemannian curvature tensor. We will also consider other
questions concerning the relations between the spectrum and special curva-
ture properties: Are properties like, say, the Einstein condition, or local har-
monicity, or the d’Atri property spectrally determined? Is the isomorphism
class of the connected holonomy group spectrally determined?

We plan to continue our investigations of the spectral geometry of orbi-
folds: Which information about the singularities of a compact Riemannian
orbifold is (not) encoded in the spectrum on functions or differential forms? In
the context of the results of [RSW08], some immediate questions which have
remained open are the following: Do there exist pairs of spherical or of hyper-
bolic Riemannian orbifolds which are isospectral but have different maximal
isotropy order? (More generally: Do the results of [DS05] on the spectral
determination of the singularities of compact hyperbolic orbisurfaces extend
to higher dimensional hyperbolic orbifolds, or are there counterexamples?)
Do there exist pairs of flat Riemannian orbifolds which are isospectral on
p-forms for all p and have the property just mentioned? Are pairs of flat
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Riemannian orbifolds which are isospectral on p-forms for all p necessarily
Sunada isospectral?

Another project is the spectral geometry of vector bundles and its re-
lation to geometric quantization. In an ongoing collaboration with Carolyn
Gordon and William Kirwin we have constructed pairs of compact, non-
symplectomorphic (sometimes not even homeomorphic) Kähler manifolds
and pairs of hermitian line bundles over them which are isospectral in all
powers (with respect to certain canonically chosen connections) and whose
Chern class is the symplectic form on the base manifold. We will work on
investigating further and possibly extending these examples in order to take
into account the notion of polarizations in the base manifolds (and corre-
sponding restrictions of the Hilbert spaces of sections of the line bundles),
which is crucial in geometric quantization theory.

2.2 Cooperations within the SFB

Path integral methods play an important role in most versions of quantum
physics. We hope that our results can be useful for projects A1 and A6.
Some of the operators studied in project B6 (e.g. [BGR07, GH07b, GH07a,
GH07c]) give rise to special field equations similar to the ones studied in
project A2. Manifolds with special geometries, which are of interest for some
of the problems formulated in this project, provide another relation to project
A2. The work on incomplete manifolds has overlap with the aims of B1
even though the methods to be used are different. The spectral geometry of
orbifolds which is one of the topics in our project provides another strong link
to the investigation of singularities in project B1. In B4 one tries to derive
isoperimetric inequalities using flow methods. In this project we intend to
use them to gain analytic control on certain operators. Moreover, the work
on the geometry of Deligne cohomology classes is mostly intended to provide
the necessary basics for some variational problems studied in B4.
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