Inverse electrostatic problems on plane

Evgeny Korotyaev

School of Mathematics, Cardiff University, Senghennydd Road, CF24 4AG Cardiff, UK; email KorotyaevE@cf.ac.uk

Abstract. We embed a system of neutral conductors $\Gamma_{n}=\left[u_{n}-i h_{n}, u_{n}+i h_{n}\right], n \in \mathbb{Z}$, in the external homogeneous electrostatic field $E_{0}=(0,-1) \in \mathbb{R}^{2}$ on the plane, for some $h \in \ell_{\mathbb{R}}^{2}$, where $u_{n}, n \in \mathbb{Z}$ is strongly increasing sequence of real numbers such that $u_{n} \rightarrow \pm \infty$ as $n \rightarrow \pm \infty$ and $u_{n+1}-u_{n} \geqslant 1, n \in \mathbb{Z}$. On each lower half of the conductor Γ_{n} there exists the induced charge positive $e_{n} \geqslant 0$. Moreover, there exists the bipolar moment d_{n} of the conductor Γ_{n}. Consider the mappings $h \rightarrow\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ and $h \rightarrow\left\{e_{n}\right\}_{n \in \mathbb{Z}}$. We prove that these mappings are real analytic isomorphisms between some Banach spaces. In the proof we use nonlinear function analyses. We obtain the Löwner equations for $z(k, h)$ and study their basic properties when the heights h_{n} of the slits Γ_{n} are changed. This is a joint project with Pavel Kargaev.

