Inverse electrostatic problems on plane

Evgeny Korotyaev

School of Mathematics, Cardiff University, Senghennydd Road, CF24 4 AG Cardiff, UK; email Korotya
ev E@cf.ac.uk

Abstract. We embed a system of neutral conductors $\Gamma_n = [u_n - ih_n, u_n + ih_n], n \in \mathbb{Z}$, in the external homogeneous electrostatic field $E_0 = (0, -1) \in \mathbb{R}^2$ on the plane, for some $h \in \ell_{\mathbb{R}}^2$, where $u_n, n \in \mathbb{Z}$ is strongly increasing sequence of real numbers such that $u_n \to \pm \infty$ as $n \to \pm \infty$ and $u_{n+1} - u_n \ge 1$, $n \in \mathbb{Z}$. On each lower half of the conductor Γ_n there exists the induced charge positive $e_n \ge 0$. Moreover, there exists the bipolar moment d_n of the conductor Γ_n . Consider the mappings $h \to \{e_n\}_{n \in \mathbb{Z}}$ and $h \to \{e_n\}_{n \in \mathbb{Z}}$. We prove that these mappings are real analytic isomorphisms between some Banach spaces. In the proof we use nonlinear function analyses. We obtain the Löwner equations for z(k, h) and study their basic properties when the heights h_n of the slits Γ_n are changed. This is a joint project with Pavel Kargaev.